A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH.
View Article and Find Full Text PDFAn automated analyzer was developed to achieve fast, precise, and accurate measurements of seawater total alkalinity (AT) based on single-point titration and spectrophotometric pH detection. The single-point titration was carried out in a circulating loop, which allowed the titrant (hydrochloric acid and bromocresol green solution) and a seawater sample to mix at a constant volume ratio. The dissolved CO2 in the sample-titrant mixture was efficiently removed by an inline CO2 remover, which consists of a gas-permeable tubing (Teflon AF2400) submerged in a sodium hydroxide (NaOH) solution.
View Article and Find Full Text PDFA new spectrophotometric method was developed to achieve continuous measurements of total dissolved inorganic carbon (DIC) in seawater. It uses a countercurrent flow design and a highly CO2-permeable membrane (Teflon AF 2400) to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a fast response time of ~22 s. This method improves the spatiotemporal resolution by more than 1 order of magnitude compared to the existing spectrophotometric method.
View Article and Find Full Text PDF