Publications by authors named "Katherine A Faltesek"

Introduction: Intranasal deferoxamine (IN DFO) has been shown to decrease memory loss and have beneficial impacts across several models of neurologic disease and injury, including rodent models of Alzheimer's and Parkinson's disease.

Methods: In order to assess the mechanism of DFO, determine its ability to improve memory from baseline in the absence of a diseased state, and assess targeting ability of intranasal delivery, we treated healthy mice with IN DFO (2.4 mg) or intraperitoneal (IP) DFO and compared behavioral and biochemical changes with saline-treated controls.

View Article and Find Full Text PDF

Emerging evidence continues to demonstrate that disrupted insulin signaling and altered energy metabolism may play a key role underpinning pathology in neurodegenerative conditions. Intranasally administered insulin has already shown promise as a memory-enhancing therapy in patients with Alzheimer's and animal models of the disease. Intranasal drug delivery allows for direct targeting of insulin to the brain, bypassing the blood brain barrier and minimizing systemic adverse effects.

View Article and Find Full Text PDF

Intranasal administration is an attractive route for systemic delivery of small, lipophilic drugs because they are rapidly absorbed through the nasal mucosa into systemic circulation. However, the low solubility of lipophilic drugs often precludes aqueous nasal spray formulations. A unique approach to circumvent solubility issues involves coadministration of a hydrophilic prodrug with an exogenous converting enzyme.

View Article and Find Full Text PDF

Objective: To clarify the effect of progressively increasing intra-abdominal pressure on esophageal pressure, transpulmonary pressure, and functional residual capacity.

Design: Controlled application of increased intra-abdominal pressure at two positive end-expiratory pressure levels (1 and 10 cm H2O) in an anesthetized porcine model of controlled ventilation.

Setting: Large animal laboratory of a university-affiliated hospital.

View Article and Find Full Text PDF

Intranasal administration is a method of delivering therapeutic agents to the central nervous system (CNS). It is non-invasive and allows large molecules that do not cross the blood-brain barrier access to the CNS. Drugs are directly targeted to the CNS with intranasal delivery, reducing systemic exposure and thus unwanted systemic side effects.

View Article and Find Full Text PDF