D-2-hydroxyglutaric aciduria type II (D2HGA2) is a severe inborn disorder of metabolism caused by heterozygous R140 mutations in the IDH2 (isocitrate dehydrogenase 2) gene. Here we report the results of treatment of two children with D2HGA2, one of whom exhibited severe dilated cardiomyopathy, with the selective mutant IDH2 enzyme inhibitor enasidenib. In both children, enasidenib treatment led to normalization of D-2-hydroxyglutarate (D-2-HG) concentrations in body fluids.
View Article and Find Full Text PDFPurpose: Diffuse gliomas are malignant brain tumors that include lower-grade gliomas (LGGs) and glioblastomas. Transformation of low-grade glioma into a higher tumor grade is typically associated with contrast enhancement on magnetic resonance imaging. Mutations in the isocitrate dehydrogenase 1 () gene occur in most LGGs (> 70%).
View Article and Find Full Text PDFPurpose: Surgery is the primary therapy for localized chondrosarcoma; for locally advanced and/or metastatic disease, no known effective systemic therapy exists. Mutations in the isocitrate dehydrogenase 1/2 (IDH1/2) enzymes occur in up to 65% of chondrosarcomas, resulting in accumulation of the oncometabolite D-2-hydroxyglutarate (2-HG). Ivosidenib (AG-120) is a selective inhibitor of mutant IDH1 approved in the United States for specific cases of acute myeloid leukemia.
View Article and Find Full Text PDFIvosidenib (AG-120) is an oral, targeted agent that suppresses production of the oncometabolite 2-hydroxyglutarate via inhibition of the mutant isocitrate dehydrogenase 1 (IDH1; mIDH1) enzyme. From a phase 1 study of 258 patients with IDH1-mutant hematologic malignancies, we report results for 34 patients with newly diagnosed acute myeloid leukemia (AML) ineligible for standard therapy who received 500 mg ivosidenib daily. Median age was 76.
View Article and Find Full Text PDFApproximately 8% to 19% of patients with acute myeloid leukemia (AML) have isocitrate dehydrogenase-2 () mutations, which occur at active site arginine residues R140 and R172. mutations produce an oncometabolite, 2-hydroxyglutarate (2-HG), which leads to DNA and histone hypermethylation and impaired hematopoietic differentiation. Enasidenib is an oral inhibitor of mutant-IDH2 proteins.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) cells harboring mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) produce the oncometabolite 2-hydroxyglutarate (2HG). This study prospectively evaluated the 2HG levels, IDH1/2 mutational status, and outcomes of patients receiving standard chemotherapy for newly diagnosed AML.
Methods: Serial samples of serum, urine, and bone marrow aspirates were collected from patients newly diagnosed with AML, and 2HG levels were measured with mass spectrometry.
Mutations in the gene encoding isocitrate dehydrogenase 2 (IDH2) occur in several types of cancer, including acute myeloid leukemia (AML). In model systems, mutant IDH2 causes hematopoietic differentiation arrest. Enasidenib, a selective small-molecule inhibitor of mutant IDH2, produces a clinical response in 40% of treated patients with relapsed/refractory AML by promoting leukemic cell differentiation.
View Article and Find Full Text PDFBackground: Mutations in the gene encoding isocitrate dehydrogenase 1 ( IDH1) occur in 6 to 10% of patients with acute myeloid leukemia (AML). Ivosidenib (AG-120) is an oral, targeted, small-molecule inhibitor of mutant IDH1.
Methods: We conducted a phase 1 dose-escalation and dose-expansion study of ivosidenib monotherapy in IDH1-mutated AML.
Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors.
View Article and Find Full Text PDFPatients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q-mutant MPNs were sensitive to small-molecule inhibition of IDH.
View Article and Find Full Text PDFRecurrent mutations in isocitrate dehydrogenase 2 () occur in ∼12% of patients with acute myeloid leukemia (AML). Mutated IDH2 proteins neomorphically synthesize 2-hydroxyglutarate resulting in DNA and histone hypermethylation, which leads to blocked cellular differentiation. Enasidenib (AG-221/CC-90007) is a first-in-class, oral, selective inhibitor of mutant-IDH2 enzymes.
View Article and Find Full Text PDFRecurrent mutations at R140 and R172 in isocitrate dehydrogenase 2 () occur in many cancers, including ∼12% of acute myeloid leukemia (AML). In preclinical models these mutations cause accumulation of the oncogenic metabolite -2-hydroxyglutarate (2-HG) and induce hematopoietic differentiation block. Single-agent enasidenib (AG-221/CC-90007), a selective mutant IDH2 (mIDH2) inhibitor, produced an overall response rate of 40.
View Article and Find Full Text PDFGenomic studies in acute myeloid leukemias (AML) have identified mutations that drive altered DNA methylation, including and Here, we show that models of AML resulting from or mutations combined with mutations are sensitive to 5-azacytidine or to the IDH2 inhibitor AG-221, respectively. 5-azacytidine and AG-221 treatment induced an attenuation of aberrant DNA methylation and transcriptional output and resulted in a reduction in leukemic blasts consistent with antileukemic activity. These therapeutic benefits were associated with restoration of leukemic cell differentiation, and the normalization of hematopoiesis was derived from mutant cells.
View Article and Find Full Text PDFSomatic gain-of-function mutations in isocitrate dehydrogenases () 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite ()-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach.
View Article and Find Full Text PDFD-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions.
View Article and Find Full Text PDFMutations in the isocitrate dehydrogenase-1 gene (IDH1) are common drivers of acute myeloid leukemia (AML) but their mechanism is not fully understood. It is thought that IDH1 mutants act by inhibiting TET2 to alter DNA methylation, but there are significant unexplained clinical differences between IDH1- and TET2-mutant diseases. We have discovered that mice expressing endogenous mutant IDH1 have reduced numbers of hematopoietic stem cells (HSCs), in contrast to Tet2 knockout (TET2-KO) mice.
View Article and Find Full Text PDFIDH1 and IDH2 are homodimeric enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) and concomitantly produce reduced NADPH from NADP(+) Mutations in the genes encoding IDH1 and IDH2 have recently been found in a variety of human cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. The mutant protein loses its normal enzymatic activity and gains a new ability to produce the "oncometabolite" R(-)-2-hydroxyglutarate (R-2-HG). R-2-HG competitively inhibits α-KG-dependent enzymes which play crucial roles in gene regulation and tissue homeostasis.
View Article and Find Full Text PDFBackground: The majority of WHO grades II and III gliomas harbor a missense mutation in the metabolic gene isocitrate dehydrogenase (IDH) and accumulate the metabolite R-2-hydroxyglutarate (R-2HG). Prior studies showed that this metabolite can be detected in vivo using proton magnetic-resonance spectroscopy (MRS), but the sensitivity of this methodology and its clinical implications are unknown.
Methods: We developed an MR imaging protocol to integrate 2HG-MRS into routine clinical glioma imaging and examined its performance in 89 consecutive glioma patients.
Mutations of IDH1 and IDH2, which produce the oncometabolite 2-hydroxyglutarate (2HG), have been identified in several tumors, including acute myeloid leukemia. Recent studies have shown that expression of the IDH mutant enzymes results in high levels of 2HG and a block in cellular differentiation that can be reversed with IDH mutant-specific small-molecule inhibitors. To further understand the role of IDH mutations in cancer, we conducted mechanistic studies in the TF-1 IDH2 R140Q erythroleukemia model system and found that IDH2 mutant expression caused both histone and genomic DNA methylation changes that can be reversed when IDH2 mutant activity is inhibited.
View Article and Find Full Text PDFMutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear.
View Article and Find Full Text PDFMutations in the IDH1 and IDH2 (isocitrate dehydrogenase) genes have been discovered across a range of solid-organ and hematologic malignancies, including acute myeloid leukemia, glioma, chondrosarcoma, and cholangiocarcinoma. An intriguing aspect of IDH-mutant tumors is the aberrant production and accumulation of the oncometabolite 2-hydroxyglutarate (2-HG), which may play a pivotal oncogenic role in these malignancies. We describe the first reported case of an IDH1 p.
View Article and Find Full Text PDFMutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles.
View Article and Find Full Text PDF