Apolipoprotein E (ApoE) functions as a ligand in receptor-mediated endocytosis of lipoprotein particles and has been demonstrated to play a role in antigen presentation. To explore the contribution of ApoE during autoimmune central nervous system (CNS) demyelination, we examined the clinical, cellular immune function, and pathologic consequences of experimental autoimmune encephalomyelitis (EAE) induction in ApoE knockout (ApoE(-/-)) mice. We observed reduced clinical severity of EAE in ApoE(-/-) mice in comparison to WT mice that was concomitant with an early reduction of dendritic cells (DCs) followed by a reduction of additional innate cells in the spinal cord at the peak of disease without any differences in axonal damage.
View Article and Find Full Text PDFSeveral challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route.
View Article and Find Full Text PDF