The continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte.
View Article and Find Full Text PDFSluggish vanadium reaction rates on the porous carbon electrodes typically used in redox flow batteries have prompted research into pretreatment strategies, most notably thermal oxidation, to improve performance. While effective, these approaches have nuanced and complex effects on electrode characteristics hampering the development of explicit structure-function relations that enable quantitative correlation between specific properties and overall electrochemical performance. Here, we seek to resolve these relationships through rigorous analysis of thermally pretreated SGL 29AA carbon paper electrodes using a suite of electrochemical, microscopic, and spectroscopic techniques and culminating in full cell testing.
View Article and Find Full Text PDFWe simulated the dynamics of azole groups (pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and tetrazole) as neat liquids and tethered via linkers to aliphatic backbones to determine how tethering and varying functional groups affect hydrogen bond networks and reorientation dynamics, both factors which are thought to influence proton conduction. We used the DL_Poly_2 molecular dynamics code with the GAFF force field to simulate tethered systems over the temperature range 200-900 K and the corresponding neat liquids under liquid state temperatures at standard pressure. We computed hydrogen bond cluster sizes; orientational order parameters; orientational correlation functions associated with functional groups, linkers, and backbones; time scales; and activation energies associated with orientational randomization.
View Article and Find Full Text PDF