Publications by authors named "Katharine N Gurba"

Ondansetron is used in clinical settings as an antiemetic drug. Although the animal studies showed its potential effectiveness also in treating neuropathic pain, the results from humans are inconclusive. The lack of efficacy of ondansetron in a subset of patients might be due to the overexpression of P-glycoprotein, which could result in low concentrations of ondansetron in the central nervous system (CNS).

View Article and Find Full Text PDF

Central neuropathic pain is caused by a disease or lesion of the brain or spinal cord. It is difficult to predict which patients will develop central pain syndromes after a central nervous system injury, but depending on the etiology, lifetime prevalence may be greater than 50%. The resulting pain is often highly distressing and difficult to treat, with no specific treatment guidelines currently available.

View Article and Find Full Text PDF

The subunit stoichiometry and arrangement of synaptic αβγ GABAA receptors are generally accepted as 2α:2β:1γ with a β-α-γ-β-α counterclockwise configuration, respectively. Whether extrasynaptic αβδ receptors adopt the analogous β-α-δ-β-α subunit configuration remains controversial. Using flow cytometry, we evaluated expression levels of human recombinant γ2 and δ subunits when co-transfected with α1 and/or β2 subunits in HEK293T cells.

View Article and Find Full Text PDF

A missense mutation in the GABAA receptor γ2L subunit, R177G, was reported in a family with complex febrile seizures (FS). To gain insight into the mechanistic basis for these genetic seizures, we explored how the R177G mutation altered the properties of recombinant α1β2γ2L GABAA receptors expressed in HEK293T cells. Using a combination of electrophysiology, flow cytometry, and immunoblotting, we found that the R177G mutation decreased GABA-evoked whole-cell current amplitudes by decreasing cell surface expression of α1β2γ2L receptors.

View Article and Find Full Text PDF

GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times.

View Article and Find Full Text PDF

A GABA(A) receptor β3 subunit mutation, G32R, has been associated with childhood absence epilepsy. We evaluated the possibility that this mutation, which is located adjacent to the most N-terminal of three β3 subunit N-glycosylation sites, might reduce GABAergic inhibition by increasing glycosylation of β3 subunits. The mutation had three major effects on GABA(A) receptors.

View Article and Find Full Text PDF

A GABA(A) receptor α6 subunit mutation, R46W, was identified as a susceptibility gene that may contribute to the pathogenesis of childhood absence epilepsy (CAE), but the molecular basis for alteration of GABA(A) receptor function is unclear. The R46W mutation is located in a region homologous to a GABA(A) receptor γ2 subunit missense mutation, R82Q, that is associated with CAE and febrile seizures in humans. To determine how this mutation reduces GABAergic inhibition, we expressed wild-type (α6β2γ2L and α6β2δ) and mutant (α6(R46W)β2γ2L and α6(R46W)β2δ) receptors in HEK 293T cells and characterize their whole-cell and single-channel currents, and surface and total levels.

View Article and Find Full Text PDF

Despite its genetic heterogeneity, hereditary spastic paraplegia (HSP) is characterized by similar clinical phenotypes, suggesting that a common biochemical pathway underlies its pathogenesis. In support of this hypothesis, we used a combination of immunoprecipitation, confocal microscopy, and flow cytometry to demonstrate that two HSP-associated proteins, atlastin-1 and NIPA1, are direct binding partners, and interestingly, that the endogenous expression and trafficking of these proteins is highly dependent upon their coexpression. In addition, we demonstrated that the cellular distribution of atlastin-1:NIPA1 complexes was dramatically altered by HSP-causing mutations, as missense mutations in atlastin-1 (R239C and R495W) and NIPA1 (T45R and G106R) caused protein sequestration in the Golgi complex (GC) and endoplasmic reticulum (ER), respectively.

View Article and Find Full Text PDF