Publications by authors named "Katharine E Magor"

Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects.

View Article and Find Full Text PDF

Tripartite motif (TRIM) proteins are involved in development, innate immunity, and viral restriction. TRIM gene repertoires vary between species, likely due to diversification caused by selective pressures from pathogens; however, this has not been explored in birds. We mined a assembled transcriptome for the TRIM gene repertoire of the domestic mallard duck (), a reservoir host of influenza A viruses.

View Article and Find Full Text PDF

The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent.

View Article and Find Full Text PDF

Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV).

View Article and Find Full Text PDF

Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection.

View Article and Find Full Text PDF

Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins.

View Article and Find Full Text PDF

Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.

View Article and Find Full Text PDF

The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway.

View Article and Find Full Text PDF

Monitoring and early detection of emerging infectious diseases in wild animals is of crucial global importance, yet reliable ways to measure immune status and responses are lacking for animals in the wild. Here we assess the usefulness of bio-loggers for detecting disease outbreaks in free-living birds and confirm detailed responses using leukocyte composition and large-scale transcriptomics. We simulated natural infections by viral and bacterial pathogens in captive mallards (Anas platyrhynchos), an important natural vector for avian influenza virus.

View Article and Find Full Text PDF

Lyme disease-causing has been reported in 10-19% of ticks from Alberta, Canada, where the tick vector is at the northwestern edge of its range. However, the presence of has not been verified independently, and the bacterial microbiome of these ticks has not been described. We performed 16S rRNA bacterial surveys on female from Alberta that were previously qPCR-tested in a Lyme disease surveillance program.

View Article and Find Full Text PDF

Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death.

View Article and Find Full Text PDF

RIG-I plays an essential role in the duck innate immune response to influenza infection. RIG-I engages the critical adaptor protein mitochondrial antiviral signaling (MAVS) to activate the downstream signaling pathway. The influenza A virus non-structural protein PB1-F2 interacts with MAVS in human cells to inhibit interferon production.

View Article and Find Full Text PDF

Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible.

View Article and Find Full Text PDF

Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI).

View Article and Find Full Text PDF

Retinoic acid inducible gene-I (RIG-I) is a cytoplasmic RNA sensor for detecting a variety of RNA viruses including influenza A viruses. Detection ultimately produces Type I interferon (IFN), which stimulates expression of interferon stimulated genes (ISGs), including RIG-I itself in a positive feedback loop. The structure and function of RIG-I is conserved across phylogeny, despite significant protein sequence divergence, however, the promoter sequences do not show the expected phylogenetic relationships and it is not known whether they are similarly regulated.

View Article and Find Full Text PDF

Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate.

View Article and Find Full Text PDF

In many nonmammalian vertebrates, the genomic organization of the MHC class I region leads to biased expression of a single classical MHC class I gene coevolving with TAP transporters, whereas class I genes are poorly expressed. This contrasts to the three codominantly expressed classical MHC class I genes in humans and mice. In a sequenced haplotype from White Pekin duck, Anas platyrhynchos, there is one predominantly expressed MHC class I, UAA, although they have five MHC class I genes in the complex, arranged TAP1-TAP2-UAA-UBA-UCA-UDA-UEA The UAA gene, situated proximal to the TAP2 gene, is expressed at levels 10-fold greater than that of another expressed gene, UDA.

View Article and Find Full Text PDF

MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown.

View Article and Find Full Text PDF

Unlabelled: Interferon-inducible transmembrane proteins (IFITMs) can restrict the entry of a wide range of viruses. IFITM3 localizes to endosomes and can potently restrict the replication of influenza A viruses (IAV) and several other viruses that also enter host cells through the endocytic pathway. Here, we investigate whether IFITMs are involved in protection in ducks, the natural host of influenza virus.

View Article and Find Full Text PDF

Wild waterfowl, including mallard ducks, are the natural reservoir of avian influenza A virus and they are resistant to strains that would cause fatal infection in chickens. Here we investigate potential involvement of TRIM proteins in the differential response of ducks and chickens to influenza. We examine a cluster of TRIM genes located on a single scaffold in the duck genome, which is a conserved synteny group with a TRIM cluster located in the extended MHC region in chickens and turkeys.

View Article and Find Full Text PDF

RIG-I activates interferon signaling pathways by promoting filament formation of the adaptor molecule, MAVS. Assembly of the MAVS filament is mediated by its CARD domain (CARD(MAVS)), and requires its interaction with the tandem CARDs of RIG-I (2CARD(RIG-I)). However, the precise nature of the interaction between 2CARD(RIG-I) and CARD(MAVS), and how this interaction leads to CARD(MAVS) filament assembly, has been unclear.

View Article and Find Full Text PDF

Retinoic acid inducible gene I (RIG-I) is a viral RNA sensor crucial in defense against several viruses including measles, influenza A and hepatitis C. RIG-I activates type-I interferon signalling through the adaptor for mitochondrial antiviral signaling (MAVS). The E3 ubiquitin ligase, tripartite motif containing protein 25 (TRIM25), activates human RIG-I through generation of anchored K63-linked polyubiquitin chains attached to lysine 172, or alternatively, through the generation of unanchored K63-linked polyubiquitin chains that interact non-covalently with RIG-I CARD domains.

View Article and Find Full Text PDF

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications.

View Article and Find Full Text PDF

Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: