Early warning systems (EWSs) are designed and deployed to create a rapid assessment and response for patients with clinical deterioration outside the intensive care unit (ICU). These models incorporate patient-level data such as vital signs and laboratory values to detect or prevent adverse clinical events, such as vital signs and laboratories to allow detection and prevention of adverse clinical events such as cardiac arrest, intensive care transfer, or sepsis. The applicability, development, clinical utility, and general perception of EWS in clinical practice vary widely.
View Article and Find Full Text PDFWhile a growing number of machine learning (ML) systems have been deployed in clinical settings with the promise of improving patient care, many have struggled to gain adoption and realize this promise. Based on a qualitative analysis of coded interviews with clinicians who use an ML-based system for sepsis, we found that, rather than viewing the system as a surrogate for their clinical judgment, clinicians perceived themselves as partnering with the technology. Our findings suggest that, even without a deep understanding of machine learning, clinicians can build trust with an ML system through experience, expert endorsement and validation, and systems designed to accommodate clinicians' autonomy and support them across their entire workflow.
View Article and Find Full Text PDFEarly recognition and treatment of sepsis are linked to improved patient outcomes. Machine learning-based early warning systems may reduce the time to recognition, but few systems have undergone clinical evaluation. In this prospective, multi-site cohort study, we examined the association between patient outcomes and provider interaction with a deployed sepsis alert system called the Targeted Real-time Early Warning System (TREWS).
View Article and Find Full Text PDFMachine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period.
View Article and Find Full Text PDFUnlabelled: To develop and evaluate a novel strategy that automates the retrospective identification of sepsis using electronic health record data.
Design: Retrospective cohort study of emergency department and in-hospital patient encounters from 2014 to 2018.
Setting: One community and two academic hospitals in Maryland.
Sepsis is a leading cause of death in the United States, with mortality highest among patients who develop septic shock. Early aggressive treatment decreases morbidity and mortality. Although automated screening tools can detect patients currently experiencing severe sepsis and septic shock, none predict those at greatest risk of developing shock.
View Article and Find Full Text PDF