Background: Transverse (t)-tubules drive the rapid and synchronous Ca rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca.
View Article and Find Full Text PDFRing-like structures made up of caveolae appear to drive the development of membrane invaginations called T-tubules which are important for muscle contraction.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2022
The highly organized transverse tubule (t-tubule) network facilitates cardiac excitation-contraction coupling and synchronous cardiac myocyte contraction. In cardiac failure secondary to myocardial infarction (MI), changes in the structure and organization of t-tubules result in impaired cardiac contractility. However, there is still little knowledge on the regional variation of t-tubule remodelling in cardiac failure post-MI.
View Article and Find Full Text PDFCardiac myocytes rely on transverse (t)-tubules to facilitate a rapid rise in calcium throughout the cell. However, despite their importance in triggering synchronous Ca release, t-tubules are highly labile structures. They develop postnatally, increase in density during exercise training and are lost in diseases such as heart failure (HF).
View Article and Find Full Text PDFVentricular arrhythmias can cause death in heart failure (HF). A trigger is the occurrence of Ca waves which activate a Na -Ca exchange (NCX) current, leading to delayed after-depolarisations and triggered action potentials. Waves arise when sarcoplasmic reticulum (SR) Ca content reaches a threshold and are commonly induced experimentally by raising external Ca , although the mechanism by which this causes waves is unclear and was the focus of this study.
View Article and Find Full Text PDFIn mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function.
View Article and Find Full Text PDFBackground: Large animal models play an important role in our understanding of the pathophysiology of atrial fibrillation (AF). Our aim was to determine whether prospectively collected baseline variables could predict the development of sustained AF in sheep, thereby reducing the number of animals required in future studies. Our hypothesis was that the relationship between atrial dimensions, refractory periods and conduction velocity (otherwise known as the critical mass hypothesis) could be used for the first time to predict the development of sustained AF.
View Article and Find Full Text PDFAims: Atrial fibrillation (AF) is a commonly occurring arrhythmia after cardiac surgery (postoperative AF, poAF) and is associated with poorer outcomes. Considering that reduced atrial contractile function is a predictor of poAF and that Ca2+ plays an important role in both excitation-contraction coupling and atrial arrhythmogenesis, this study aims to test whether alterations of intracellular Ca2+ handling contribute to impaired atrial contractility and to the arrhythmogenic substrate predisposing patients to poAF.
Methods And Results: Right atrial appendages were obtained from patients in sinus rhythm undergoing open-heart surgery.
Background: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method).
Results: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world.
Heart failure (HF) is characterized by poor survival, a loss of catecholamine reserve and cellular structural remodeling in the form of disorganization and loss of the transverse tubule network. Indeed, survival rates for HF are worse than many common cancers and have not improved over time. Tadalafil is a clinically relevant drug that blocks phosphodiesterase 5 with high specificity and is used to treat erectile dysfunction.
View Article and Find Full Text PDFAtrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle.
View Article and Find Full Text PDFKey Points: Ageing is associated with an increased risk of cardiovascular disease and arrhythmias, with the most common arrhythmia being found in the atria of the heart. Little is known about how the normal atria of the heart remodel with age and thus why dysfunction might occur. We report alterations to the atrial systolic Ca transient that have implications for the function of the atrial in the elderly.
View Article and Find Full Text PDFHeart failure (HF) is predominantly a disease of older adults and characterized by extensive sympatho-vagal imbalance leading to impaired reflex control of heart rate (HR). However, whether aging influences the development or extent of the autonomic imbalance in HF remains unclear. To address this, we used an ovine model of aging with tachypacing-induced HF to determine whether aging affects the chronotropic and inotropic responses to autonomic stimulation and reduction in heart rate variability (HRV) in HF.
View Article and Find Full Text PDFThe identification of disturbances in the cellular structure, electrophysiology and calcium handling of atrial cardiomyocytes is crucial to the understanding of common pathologies such as atrial fibrillation. Human right atrial specimens can be obtained during routine cardiac surgery and may be used for isolation of atrial myocytes. These samples provide the unique opportunity to directly investigate the effects of human disease on atrial myocytes.
View Article and Find Full Text PDFThis paper summarizes the advances made by the DiFrancesco and Noble (DFN) model of cardiac cellular electrophysiology, which was published in Philosophical Transactions B in 1985. This model was developed at a time when the introduction of new techniques and provision of experimental data had resulted in an explosion of knowledge about the cellular and biophysical properties of the heart. It advanced the cardiac modelling field from a period when computer models considered only the voltage-dependent channels in the surface membrane.
View Article and Find Full Text PDFCardiovascular disease is the main cause of death globally, accounting for over 17 million deaths each year. As the incidence of cardiovascular disease rises markedly with age, the overall risk of cardiovascular disease is expected to increase dramatically with the aging of the population such that by 2030 it could account for over 23 million deaths per year. It is therefore vitally important to understand how the heart remodels in response to normal aging for at least two reasons: i) to understand why the aged heart is increasingly susceptible to disease; and ii) since it may be possible to modify treatment of disease in older adults if the underlying substrate upon which the disease first develops is fully understood.
View Article and Find Full Text PDFHeart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca(2+) and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca(2+) concentration studied in single left atrial myocytes under voltage and current clamp conditions.
View Article and Find Full Text PDFRationale: Transverse tubules (t-tubules) regulate cardiac excitation-contraction coupling and exhibit interchamber and interspecies differences in expression. In cardiac disease, t-tubule loss occurs and affects the systolic calcium transient. However, the mechanisms controlling t-tubule maintenance and whether these factors differ between species, cardiac chambers, and in a disease setting remain unclear.
View Article and Find Full Text PDFAtrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling.
View Article and Find Full Text PDFAims: During activation of cardiac myocytes, less than 1% of cytosolic Ca is free; the rest is bound to buffers, largely SERCA, and troponin C. Signalling by phosphorylation, as occurs during β-adrenergic stimulation, changes the Ca-binding affinity of these proteins and may affect the systolic Ca transient. Our aim was to determine the effects of β-adrenergic stimulation on Ca buffering and to differentiate between the roles of SERCA and troponin.
View Article and Find Full Text PDFThe incidence and prevalence of atrial fibrillation (AF) are projected to increase significantly worldwide, imposing a significant burden on healthcare resources. The disease itself is extremely heterogeneous in its epidemiology, pathophysiology, and treatment options based on individual patient characteristics. Whilst ageing is well recognised to be an independent risk factor for the development of AF, this condition also affects the young in whom the condition is frequently symptomatic and troublesome.
View Article and Find Full Text PDF