This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.
View Article and Find Full Text PDFBackground: Epidermal growth factor receptor (EGFR) alterations are associated with multiple cancers. Current EGFR-directed therapies have led to increased efficacy but are associated with specific side effects. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) targets EGFR with a monoclonal antibody linked to a cytotoxin, and is highly tumor-specific.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative form of arthritis that can result in loss of joint function and chronic pain. The pathological pain state that develops with OA disease involves plastic changes in the peripheral and central nervous systems, however, the cellular mechanisms underlying OA are not fully understood. We characterized the medial meniscal tear (MMT) surgical model and the intra-articular injection of monosodium iodoacetate (MIA) chemical model of OA in rats.
View Article and Find Full Text PDFTRPV3 is a nonselective cation channel activated by temperatures above 33°C and is reported to be localized in keratinocytes and nervous tissue. To investigate a role for TRPV3 in pain modulation, we conducted a series of in vivo electrophysiological studies on spinal and brain nociceptive neurons. Structurally diverse TRPV3 receptor antagonists reduced responses of spinal wide dynamic range (WDR) neurons to low-intensity mechanical stimulation in neuropathic rats, but only CNS-penetrant antagonists decreased elevated spontaneous firing.
View Article and Find Full Text PDFActivation of T-type Ca²⁺ channels contributes to nociceptive signaling by facilitating action potential bursting and modulation of membrane potentials during periods of neuronal hyperexcitability. The role of T-type Ca²⁺ channels in chronic pain is supported by gene knockdown studies showing that decreased Ca(v)3.2 channel expression results in the loss of low voltage-activated (LVA) currents in dorsal root ganglion (DRG) neurons and attenuation of neuropathic pain in the chronic constriction injury (CCI) model.
View Article and Find Full Text PDFUnlabelled: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 μM).
View Article and Find Full Text PDFN-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.
View Article and Find Full Text PDFPreclinical assessment of pain has typically relied on measuring animal responses to evoked stimulation. Because of inherent limitations of these assays, there is a need to develop measures of animal pain/discomfort that are objective, not experimentally evoked, and mimic the human condition. Patients with chronic pain manifest a variety of co-morbidities, one of which is disturbances in sleep.
View Article and Find Full Text PDFThere is growing evidence supporting a role for histamine H(3) receptors in the modulation of pathological pain. To further our understanding of this modulation, we examined the effects of a selective H(3) receptor antagonist, 6-((3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide (GSK189254), on spinal neuronal activity in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of GSK189254 (0.
View Article and Find Full Text PDFP2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.
View Article and Find Full Text PDFTRPV1 (transient receptor potential vanilloid family type 1) is a nonselective cation channel that is activated and/or sensitized by noxious heat, protons, and other endogenous molecules released following tissue injury. In addition, a role for TRPV1 in mechanotransmission is emerging. We have recently reported that a selective TRPV1 receptor antagonist, A-889425, reduces mechanical allodynia and spinal neuron responses to mechanical stimulation of complete Freund's adjuvant (CFA)-inflamed rat hind paws.
View Article and Find Full Text PDFDespite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay).
View Article and Find Full Text PDFThe capsaicin receptor (TRPV1) antagonist ABT-102 demonstrates efficacy in multiple preclinical pain models. However, evolving clinical data for this compound class suggest potentially profound drug-induced thermosensory impairment. Safety and tolerability of ABT-102 were assessed in a multiple-dose, double-blind, placebo-controlled, randomized healthy volunteer trial.
View Article and Find Full Text PDFThe TRPV1 receptor functions as a molecular integrator, and blockade of this receptor modulates enhanced somatosensitivity across several animal models of pathological pain, including models of osteoarthritic (OA) pain. In order to further characterize the contributions of TRPV1 to OA-related pain, we investigated the systemic effects of a selective TRPV1 receptor antagonist, A-889425, on grip force behavior, and on the evoked and spontaneous firing of spinal wide dynamic range (WDR) and nociceptive specific (NS) neurons in the monoiodoacetate (MIA) model of OA. Administration of A-889425 (10-300 μmol/kg, p.
View Article and Find Full Text PDFUnlabelled: Activation of Rho kinase (ROCK) has been shown to play a role in neuronal regeneration and development of posttraumatic neuropathic pain. The ROCK inhibitor Fasudil, used clinically for the treatment of vasospasm, was used to investigate the analgesic profile of a ROCK inhibitor. Fasudil was evaluated in different preclinical models of neuropathic, osteoarthritic (OA), and inflammatory pain as well as capsaicin-induced acute pain and secondary mechanical hypersensitivity.
View Article and Find Full Text PDFBackground: There is growing evidence supporting a role for TRPA1 receptors in the neurotransmission of peripheral mechanical stimulation. In order to enhance understanding of TRPA1 contributions to mechanotransmission, we examined the effects a selective TRPA1 receptor antagonist, A-967079, on spinal neuronal activity following peripheral mechanical stimulation in uninjured, CFA-inflamed, and osteoarthritc (OA) rats.
Results: Systemic injection of A-967079 (30 micromol/kg, i.
TRPV1 receptors are activated and/or modulated by noxious heat, capsaicin, protons and other endogenous agents released following tissue injury. There is a growing appreciation that this molecular integrator may also have a role in mechanosensation. To further understand this role, we investigated the systemic and site-specific effects of a selective TRPV1 receptor antagonist, A-889425, on low-intensity mechanical stimulation in inflamed rats.
View Article and Find Full Text PDFThe transient receptor potential vanilloid (TRPV) 1 receptor, a nonselective cation channel expressed on peripheral sensory neurons and in the central nervous system, plays a key role in pain. TRPV1 receptor antagonism is a promising approach for pain management. In this report, we describe the pharmacological and functional characteristics of a structurally novel TRPV1 antagonist, (R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102), which has entered clinical trials.
View Article and Find Full Text PDFWe have recently reported that systemic delivery of A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], a selective Na(v)1.8 sodium channel blocker, reduces behavioral measures of chronic pain. In the current study, the effects of A-803467 on evoked and spontaneous firing of wide dynamic range (WDR) neurons were measured in uninjured and rats with spinal nerve ligations (SNLs).
View Article and Find Full Text PDFActivation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Na(v)1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain.
View Article and Find Full Text PDFSystemic administration of A-425619, a potent and selective TRPV1 receptor antagonist that does not readily enter the CNS, produces antinociception in several rat models of pathological nociception, including complete Freund's adjuvant (CFA)-induced thermal hyperalgesia. To further understand the peripheral mechanisms of TRPV1-related antinociception, we examined the effects of systemic and site-specific injections of A-425619 on evoked and spontaneous firing of spinal wide dynamic range (WDR) neurons in uninjured rats and rats with peripheral inflammation (CFA; 48 h). In uninjured rats, capsaicin-evoked (1 microg) WDR activity was completely blocked by intraplantar administration of A-425619 (3-100 nmol).
View Article and Find Full Text PDFSpontaneous activity and receptive field size for spinal wide dynamic range (WDR) neurons were measured and related to the mechanical allodynia in both neuropathic (L5-L6 ligation, 14 days post-injury) and complete Freund's adjuvant-inflamed rats (CFA, 2 days post-injury). The size of the WDR receptive field located on the hindpaw expanded significantly (p<0.01) following both modes of injury, with no difference between CFA and neuropathic animals.
View Article and Find Full Text PDFWe have recently reported that systemic delivery of A-317491, the first non-nucleotide antagonist that has high affinity and selectivity for blocking P2X3 homomeric and P2X2/3 heteromeric channels, is antinociceptive in rat models of chronic inflammatory and neuropathic pain. In an effort to further evaluate the role of P2X3/P2X2/3 receptors in nociceptive transmission, A-317491 was administered either intrathecally or into the hindpaw of a rat in several models of acute and chronic nociception. Intraplantar (ED50=300 nmol) and intrathecal (ED50=30 nmol) injections of A-317491 produced dose-related antinociception in the CFA model of chronic thermal hyperalgesia.
View Article and Find Full Text PDFWe have discovered that polar 7-substituents of pyridopyrimidine derivatives affect not only whole cell AK inhibitory potency, but also selectivity in causing locomotor side effects in vivo animal models. We have identified compound, 1o, which has potent whole cell AK inhibitory potency, analgesic activity and minimal reduction of locomotor activity.
View Article and Find Full Text PDFIt is well established that the vanilloid receptor, VR1, is an important peripheral mediator of nociception. VR1 receptors are also located in several brain regions, yet it is uncertain whether these supraspinal VR1 receptors have any influence on the nociceptive system. To investigate a possible nociceptive role for supraspinal VR1 receptors, capsaicin (10 nmol in 0.
View Article and Find Full Text PDF