Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an acquired disease with significant morbidity that affects both children and adults. Post-exertional malaise is a cardinal symptom of ME/CFS and impacts a patient's functional capacity (FC). The absence of effective tools to assess FC has significant consequences for timely diagnosis, clinical follow-up, assessments for patient disability benefits, and research studies.
View Article and Find Full Text PDFMyalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, debilitating, and multi-faceted illness. Heterogenous onset and clinical presentation with additional comorbidities make it difficult to diagnose, characterize, and successfully treat. Current treatment guidelines focus on symptom management, but with no clear target or causative mechanism, remission rates are low, and fewer than 5% of patients return to their pre-morbid activity levels.
View Article and Find Full Text PDFUnderstanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class , and a greater diversity of DNA viruses including extracellular phages and integrated prophages.
View Article and Find Full Text PDFMyalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystemic disease of unknown aetiology that is characterised by disabling chronic fatigue and involves both the immune and gastrointestinal (GI) systems. Patients display alterations in GI microbiome with a significant proportion experiencing GI discomfort and pain and elevated blood biomarkers for altered intestinal permeability compared with healthy individuals. To investigate a possible GI origin of ME/CFS we designed a feasibility study to test the hypothesis that ME/CFS pathogenesis is a consequence of increased intestinal permeability that results in microbial translocation and a breakdown in immune tolerance leading to generation of antibodies reactive to indigenous intestinal microbes.
View Article and Find Full Text PDF