The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined.
View Article and Find Full Text PDFThe metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined.
View Article and Find Full Text PDFIn recent years, we have seen an increasing focus in the academic environment on equity, diversity and inclusion. However, one broad group often left out of these discussions are disabled scientists/scientists with disabilities, who often face severe challenges entering the research profession and navigating their careers. Building on the success of the 2022 Young Embryologist Network's meeting, which included a session on 'Working in science with a disability' ( Morgan, 2023) we learn here from the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability, as well as accommodations that can make science, technology, engineering, mathematics and medicine (STEMM) careers more accessible and inclusive.
View Article and Find Full Text PDFHox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events.
View Article and Find Full Text PDF