Diacyl glycerophospholipids (GPs) belong to the most abundant lipid species in living organisms and consist of a glycerol backbone with fatty acyl groups in sn-1 and sn-2 and a polar head group in the sn-3 position. Regioisomeric mixed diacyl GPs have the same fatty acyl composition but differ in their allocation to sn-1 or sn-2 of the glycerol unit. In-depth analysis of regioisomeric mixed diacyl GP species composed of fatty acyl moieties that are similar in length and degree of saturation typically requires either chemical derivatization or sophisticated analytical instrumentation, since these types of regioisomers are not well resolved under standard ultra-performance liquid chromatography (UPLC) conditions.
View Article and Find Full Text PDFMitochondria fulfill vital metabolic functions and act as crucial cellular signaling hubs, integrating their metabolic status into the cellular context. Here, we show that defective cardiolipin remodeling, upon loss of the cardiolipin acyl transferase tafazzin, decreases HIF-1α signaling in hypoxia. Tafazzin deficiency does not affect posttranslational HIF-1α regulation but rather HIF-1α gene expression, a dysfunction recapitulated in iPSC-derived cardiomyocytes from Barth syndrome patients with tafazzin deficiency.
View Article and Find Full Text PDFAmong the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology.
View Article and Find Full Text PDFBarth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease.
View Article and Find Full Text PDF