The Poly (I:C) (polyriboinosinic-polyribocytidilic acid) paradigm of maternal immune activation (MIA) is most widely used as experimental model for the evaluation of the effects of gestational infection on the brain and behavior of the progeny. We have previously reported significant batch-to-batch variability in the effects of Poly (I:C), purchased from the same supplier (Sigma-Aldrich), on maternal and fetal immune responses and found these differences to be dependent on the relative amount of synthetic double-stranded RNA fragments in the high versus low molecular weight (LMW) range contained in the compound. We here resorted to Poly (I:C) purified for LMW dsRNA fragments to establish a MIA paradigm with increased reproducibility and enhanced standardization in an effort to refine the MIA paradigm and characterize its effect on offspring behavior.
View Article and Find Full Text PDFAdverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment.
View Article and Find Full Text PDFHygiene management protocols in laboratory mouse husbandries worldwide most commonly employ soiled bedding-exposed sentinel mice to monitor the occurrence of infections in mouse colonies. Using this approach, sentinel mice repeatedly receive a mixture of used bedding, supplied by a variety of cages of a defined hygienic unit for a period of several months. Hereby, microorganisms shed in the used bedding can infect the sentinel animals and can be detected in subsequent health monitoring procedures.
View Article and Find Full Text PDFMycotoxins produced by spp. act genotoxic in cell-based studies, but data on their toxicity is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.
View Article and Find Full Text PDFBackground: Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis, or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations.
View Article and Find Full Text PDFObesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health.
View Article and Find Full Text PDFHuman diamine oxidase (hDAO) rapidly inactivates histamine by deamination. No pharmacokinetic data are available to better understand its potential as a new therapeutic modality for diseases with excess local and systemic histamine, like anaphylaxis, urticaria or mastocytosis. After intravenous administration of recombinant hDAO to rats and mice, more than 90% of the dose disappeared from the plasma pool within 10 min.
View Article and Find Full Text PDFRheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators.
View Article and Find Full Text PDFDespite the frequent infection of agricultural crops by Alternaria spp., their toxic secondary metabolites and potential food contaminants lack comprehensive metabolic characterization. In this study, we investigated their bioavailability, metabolism, and excretion in vivo.
View Article and Find Full Text PDFBackground: Due to aging, tissue regeneration gradually declines. Contemporary strategies to promote tissue-specific regeneration, in particular in elderly patients, often include synthetic material apt for implantation primarily aiming at upholding body functions and regaining appropriate anatomical and functional integrity.
Objective: Biomaterials suitable for complex reconstruction surgical procedures have to exert high physicochemical stability and biocompatibility.
Although infrared radiation (IR) represents more than 50% of the solar radiation reaching the Earth's surface, this waveband has been hardly investigated in terms of tumourigenesis. The objective of the present study was to investigate the influence of IR on ultraviolet B (UVB)-induced carcinogenesis in male and female wild type mice. For this purpose, male and female C57BL/6N mice were subjected to a long-term irradiation protocol.
View Article and Find Full Text PDFAlternaria mycotoxins frequently contaminate agricultural crops and may impact animal and human health. However, data on mammalian metabolism and potential biomarkers of exposure for human biomonitoring (HBM) are scarce. Here, we report the preliminary investigation with respect to metabolism and excretion of Alternaria toxins in Sprague Dawley rats.
View Article and Find Full Text PDFBiofunctionalization of scaffold materials can enable the healing of large bone defects. In case of minimally invasive guided-bone regeneration (GBR), limitations are however hard-to-control side effects related to the potential release of biofactors into the systemic environment. Biofactors can be stably bound to nanodiamond particles (ND) through physisorption.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, characterized by synovial infiltration of various inflammatory cells. Chemokines are involved in controlling the recruitment of different cell types into the synovial membrane. The role of CCR6 in the development of arthritis so far remains unclear.
View Article and Find Full Text PDF