Identifying factors that influence age-related cognitive decline is crucial, given its severe personal and societal impacts. However, studying aging in human or animal models is challenging due to the significant variability in aging processes among individuals. Additionally, longitudinal and cross-sectional studies often produce differing results.
View Article and Find Full Text PDFCeasing an ongoing motor response requires action cancelation. This is impaired in many pathologies such as attention deficit disorder and schizophrenia. Action cancelation is measured by the stop signal task that estimates how quickly a motor response can be stopped when it is already being executed.
View Article and Find Full Text PDFRodent behavioral tasks are crucial to understanding the nature and underlying biology of cognition and cognitive deficits observed in psychiatric and neurological pathologies. Olfaction, as the primary sensory modality in rodents, is widely used to investigate cognition in rodents. In recent years, automation of olfactory tasks has made it possible to conduct olfactory experiments in a time- and labor-efficient manner while also minimizing experimenter-induced variability.
View Article and Find Full Text PDFCannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT.
View Article and Find Full Text PDFBehavioral syndromes are suites of two or more behaviors that correlate across environmental contexts. The aggression-boldness syndrome links aggression, boldness, and exploratory activity in a novel environment. Although aggression-boldness has been described in many animals, the mechanism linking its behavioral components is not known.
View Article and Find Full Text PDFGenetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue.
View Article and Find Full Text PDF