The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.
View Article and Find Full Text PDFThe P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFThe orthosteric ATP-binding site of the P2X receptors is poorly understood. Only a few compounds were well characterized for their P2X receptor functional activity and subtype selectivity. This study represents the first fully functional characterization of various ATP derivatives combined with in silico studies to advance the understanding of SARs at the orthosteric binding sites of P2X receptors leading to the identification of 2-chloro-3-trifluoromethylbenzoyl ATP ester as a novel pan-P2X receptor agonist and several subtype-selective P2X receptor agonists.
View Article and Find Full Text PDF