Publications by authors named "Katharina Skaja"

Article Synopsis
  • Resistive switching oxides are key materials for mimicking synaptic behavior in artificial neural networks, particularly with interface-type switching systems that allow gradual, analog switching.
  • These devices typically combine a conductive oxide layer with an insulating tunnel barrier, but existing tunnel oxides tend to form unwanted conducting filaments when voltage thresholds are exceeded.
  • The study uses advanced techniques to analyze two tunnel oxide devices, revealing that oxygen ion exchange plays a crucial role in switching mechanisms, and even when filamentary switching occurs, ionic motion remains active across the device.
View Article and Find Full Text PDF

In this study, we investigated the influence of oxygen non-stoichiometry on the resistive switching performance of tantalum oxide based memristive devices. Thin-films of tantalum oxide were deposited with varying sputter power and oxygen partial pressure. The electroforming voltage was found to decrease with increasing power density or decreased oxygen partial pressure, while the endurance remained stable and the resistance window R/R was found to increase.

View Article and Find Full Text PDF

The local electronic properties of tantalum oxide (TaOx, 2 ≤ x ≤ 2.5) and strontium ruthenate (SrRuO3) thin-film surfaces were studied under the influence of electric fields induced by a scanning tunneling microscope (STM) tip. The switching between different redox states in both oxides is achieved without the need for physical electrical contact by controlling the magnitude and polarity of the applied voltage between the STM tip and the sample surface.

View Article and Find Full Text PDF

The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices.

View Article and Find Full Text PDF

A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal cations, and valence change memories, in which the mobile species is thought to be oxygen anions (or positively charged oxygen vacancies). Here we show, using scanning tunnelling microscopy and supported by potentiodynamic current-voltage measurements, that in three typical valence change memory materials (TaO(x), HfO(x) and TiO(x)) the host metal cations are mobile in films of 2 nm thickness.

View Article and Find Full Text PDF