The facile synthesis of aminoallenes, accomplished by a selenium-π-acid-catalyzed cross-coupling of an -fluorinated sulfonimide with simple, non-activated alkynes, is reported. Until now, aminoallenes were difficult to be accessed by customary means, inasmuch as pre-activated and, in part, intricate starting materials were necessary for their synthesis. In sharp contrast, the current study shows that ordinary internal alkynes can serve as simple and readily available precursors for the construction of the aminoallene motif.
View Article and Find Full Text PDFA catalytic regime for the direct phosphatation of simple, non-polarized alkenes has been devised that is based on using ordinary, non-activated phosphoric acid diesters as the phosphate source and O as the terminal oxidant. The title method enables the direct and highly economic construction of a diverse range of allylic phosphate esters. From a conceptual viewpoint, the aerobic phosphatation is entirely complementary to traditional methods for phosphate ester formation, which predominantly rely on the use of prefunctionalized or preactivated reactants, such as alcohols and phosphoryl halides.
View Article and Find Full Text PDFBackground: Growth differentiation factor 15 (GDF15) is involved in tumor pathogenesis of oral squamous cell carcinoma (OSCC). The aim of this study was an investigation of the potential influence of GDF15 on radioresistance of OSCC cells in vitro.
Methods: Oral squamous cell carcinoma cell lines were irradiated with 0, 2, or 6 Gy, and GDF15 expression in the supernatant per survived cell colony was examined with ELISA.