Proton therapy administers a highly conformal dose to the tumour region, necessitating accurate prediction of the patient's 3D map of proton relative stopping power (RSP) compared to water. This remains challenging due to inaccuracies inherent in single-energy computed tomography (SECT) calibration. Recent advancements in spectral x-ray CT (xCT) and proton CT (pCT) have shown improved RSP estimation compared to traditional SECT methods.
View Article and Find Full Text PDFProton therapy allows for highly conformal dose deposition, but is sensitive to range uncertainties. Several approaches currently under development measure composition-dependent secondary radiation to monitor the delivered proton range. To fully utilize these methods, an estimate of the elemental composition of the patient's tissue is often needed.
View Article and Find Full Text PDF. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (), electron density, and stopping power ratio (SPR).
View Article and Find Full Text PDFAs one of the latest developments in X-ray computed tomography (CT), photon-counting technology allows spectral detection, demonstrating considerable advantages as compared to conventional CT. In this study, we investigated the use of a first-generation clinical photon-counting computed tomography (PCCT) scanner and estimated proton relative (to water) stopping power (RSP) of tissue-equivalent materials from virtual monoenergetic reconstructions provided by the scanner. A set of calibration and evaluation tissue-equivalent inserts were scanned at 120 kVp.
View Article and Find Full Text PDF. Proton therapy of cancer improves dose conformality to the target and sparing of surrounding healthy tissues compared to conventional photon treatments. However, proton therapy's advantage could be even larger if proton range uncertainties were reduced.
View Article and Find Full Text PDFImage guidance and precise irradiation are fundamental to ensure the reliability of small animal oncology studies. Accurate positioning of the animal and the in-beam monitoring of the delivered radio-therapeutic treatment necessitate several imaging modalities. In the particular context of proton therapy with a pulsed beam, information on the delivered dose can be retrieved by monitoring the thermoacoustic waves resulting from the brief and local energy deposition induced by a proton beam (ionoacoustics).
View Article and Find Full Text PDFPurpose: Ventilation-induced tumour motion remains a challenge for the accuracy of proton therapy treatments in lung patients. We investigated the feasibility of using a 4D virtual CT (4D-vCT) approach based on deformable image registration (DIR) and motion-aware 4D CBCT reconstruction (MA-ROOSTER) to enable accurate daily proton dose calculation using a gantry-mounted CBCT scanner tailored to proton therapy.
Methods: Ventilation correlated data of 10 breathing phases were acquired from a porcine ex-vivo functional lung phantom using CT and CBCT.
Inter-fractional variations of breathing pattern and patient anatomy introduce dose uncertainties in proton therapy. One approach to monitor these variations is to utilize the cone-beam computed tomography (CT, CBCT) scans routinely taken for patient positioning, reconstruct them as 4DCBCTs, and generate 'virtual CTs' (vCTs), combining the accurate CT numbers of the diagnostic 4DCT and the geometry of the daily 4DCBCT by using deformable image registration (DIR). In this study different algorithms for 4DCBCT reconstruction and DIR were evaluated.
View Article and Find Full Text PDFProtons with modern pencil-beam scanning delivery are widely used in state-of-the-art radiotherapy. To reduce the unwanted effect of proton range uncertainties, prompt gamma (PG) monitoring is investigated and considered one of the most promising methods for real-time, in vivo range verification. Despite good correlation between the penetration depth of the PG signal and proton range in most cases, mismatch can occur especially because of tissue heterogeneities.
View Article and Find Full Text PDF