Immune-mediated inflammatory diseases, such as rheumatoid arthritis, psoriatic arthritis, peripheral and/or axial spondyloarthritis, Crohn's disease, and ulcerative colitis, are characterized by molecular and cellular changes in the immune system. Due to the systemic nature of these diseases, organs such as the liver or cardiovascular system are often affected by the inflammatory process. Tumor necrosis factor-α inhibitor therapy reduces the activation of pro-inflammatory signaling cascades, mitigates the chronic inflammatory process by restoring cellular balance, and alleviates clinical consequences, such as pain and tissue damage.
View Article and Find Full Text PDFSchwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia.
View Article and Find Full Text PDFDifferentiation of oligodendrocytes and myelin production in the vertebrate central nervous system require highly concerted changes in gene expression. The transcription factors Sox10 and Myrf are both central to this process and jointly regulate expression of myelin genes. Here we show that Sox10 and Myrf also cooperate in the activation of the gene coding for the dual specificity protein phosphatase Dusp15 (also known as VHY) during this process.
View Article and Find Full Text PDFBackground: Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells.
Methods: We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone.