Publications by authors named "Katharina Lotzer"

Objective: Mouse aorta smooth muscle cells (SMC) express tumor necrosis factor receptor superfamily member 1A (TNFR-1) and lymphotoxin beta-receptor (LTbetaR). Circumstantial evidence has linked the SMC LTbetaR to tertiary lymphoid organogenesis in hyperlipidemic mice. Here, we explored TNFR-1 and LTbetaR signaling in cultured SMC.

View Article and Find Full Text PDF

Atherosclerosis involves a macrophage-rich inflammation in the aortic intima. It is increasingly recognized that this intimal inflammation is paralleled over time by a distinct inflammatory reaction in adjacent adventitia. Though cross talk between the coordinated inflammatory foci in the intima and the adventitia seems implicit, the mechanism(s) underlying their communication is unclear.

View Article and Find Full Text PDF

The 5-lipoxygenase (5-LO) pathway generates lipid mediators, i.e. the cysteinyl leukotrienes (cysLTs) LTC(4)/LTD(4) and LTB(4).

View Article and Find Full Text PDF

The endothelial cell protein C receptor (EPCR) is expressed on endothelial cells and regulates the protein C anticoagulant pathway via the thrombin-thrombomodulin complex. Independent of its anticoagulant activity, activated protein C (APC) can directly signal to endothelial cells and upregulate antiapoptotic and antiinflammatory genes. Here we show that vascular smooth muscle cells (SMCs) also express EPCR.

View Article and Find Full Text PDF

Cysteinyl leukotrienes (cysLT), i.e., LTC4, LTD4, and LTE4, are lipid mediators derived from the 5-lipoxygenase pathway, and the cysLT receptors cysLT1-R/cysLT2-R mediate inflammatory tissue reactions.

View Article and Find Full Text PDF

Leukotrienes (LTs) are powerful inflammatory lipid mediators derived from the 5-lipoxygenase (5-LO) cascade of arachidonic acid. Recent clinical, population genetic, cell biological, and mouse studies indicate participation of the 5-LO pathway in atherogenesis and arterial wall remodeling. 5-LO is expressed by leukocytes including blood monocytes, tissue macrophages, dendritic cells, neutrophils, and mast cells.

View Article and Find Full Text PDF

Activation of the 5-lipoxygenase (5-LO) pathway leads to the biosynthesis of proinflammatory leukotriene lipid mediators. Genetic studies have associated 5-LO and its accessory protein, 5-LO-activating protein, with cardiovascular disease, myocardial infarction and stroke. Here we show that 5-LO-positive macrophages localize to the adventitia of diseased mouse and human arteries in areas of neoangiogenesis and that these cells constitute a main component of aortic aneurysms induced by an atherogenic diet containing cholate in mice deficient in apolipoprotein E.

View Article and Find Full Text PDF

The present study investigates whether vascular smooth muscle cells of the human saphenous vein (SMC) express a functionally active protease-activated receptor-3 (PAR-3). PAR-3 mRNA was detected by RT-PCR. In the presence of thrombin, a rapid and transient increase in PAR-3 mRNA was observed.

View Article and Find Full Text PDF

Objective: Inflammatory infiltrates and atherosclerotic lesions emerge when monocytes adhere to endothelial cells (ECs), migrate into the subendothelial space, and become macrophages (MPhi(s)). Leukotrienes (LTs), products of 5-lipoxygenase, are powerful inflammatory mediators. 5-lipoxygenase+ MPhi(s) have been shown to increase during atherogenesis, and LT receptor (LT-R) transcripts were identified in diseased arteries.

View Article and Find Full Text PDF

Oxidation products of low-density lipoproteins have been suggested to promote inflammation during atherogenesis, and reticulocyte-type 15-lipoxygenase has been implicated to mediate this oxidation. In addition, the 5-lipoxygenase cascade leads to formation of leukotrienes, which exhibit strong proinflammatory activities in cardiovascular tissues. Here, we studied both lipoxygenase pathways in human atherosclerosis.

View Article and Find Full Text PDF