Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport.
View Article and Find Full Text PDFThe synthesis of a sulfate-modified dendritic peptide amphiphile and its self-assembly into one-dimensional rod-like architectures in aqueous medium is reported. The influence of the ionic strength on the supramolecular polymerization was probed via circular dichroism spectroscopy and cryogenic transmission electron microscopy. Physiological salt concentrations efficiently screen the charges of the dendritic building block equipped with eight sulfate groups and trigger the formation of rigid supramolecular polymers.
View Article and Find Full Text PDFNiemann-Pick disease type C1 (NPC1) is a rare inherited lipid storage disorder caused by mutations in the NPC1 gene. Mutations lead to impaired lipid trafficking and subsequently to accumulation of cholesterol and sphingolipids. NPC1-patients present variable multisystemic symptoms, including neurological deficits.
View Article and Find Full Text PDFOxidative stress (OS) represents a state of an imbalanced amount of reactive oxygen species (ROS) and/or a hampered efficacy of the antioxidative defense system. Cells of the central nervous system are particularly sensitive to OS, as they have a massive need of oxygen to maintain proper function. Consequently, OS represents a common pathophysiological hallmark of neurodegenerative diseases and is discussed to contribute to the neurodegeneration observed amongst others in Alzheimer's disease and Parkinson's disease.
View Article and Find Full Text PDFFluorescent nanomaterials are expected to revolutionize medical diagnostic, imaging, and therapeutic tools due to their superior optical and structural properties. Their inefficient water solubility, cell permeability, biodistribution, and high toxicity, however, limit the full potential of their application. To overcome these obstacles, a water-soluble, fluorescent, cytocompatible polymer-single-walled carbon nanotube (SWNT) complex is introduced for bioimaging applications.
View Article and Find Full Text PDFA series of water-soluble, hydroxylated and sulphated, polyglycerol (PG) dendronised, monofunctional perylene bisimides (PBIs) were synthesised in three generations. Their photophysical properties were determined by absorption and emission spectroscopy and their suitability as potential biolabels examined by biological in vitro studies after bioconjugation. It could be shown that the photophysical properties of the PBI labels can be improved by increasing the sterical demand and ionic charge of the attached dendron.
View Article and Find Full Text PDFNear-infrared (NIR) fluorescent dyes are gaining increased attention due to their potential to serve as molecular probes for in vivo imaging. Here, we demonstrate that oligoglycerol dendrons effectively enhance the fluorescence properties of an NIR dye by increasing the solubility in water and the prevention of aggregate formation. First- and second-generation oligoglycerol dendrons were conjugated to an NIR dye via a dipolar-cycloaddition (click) reaction.
View Article and Find Full Text PDF