Publications by authors named "Katharina Hense"

To date, there are almost no investigations addressing functional connectivity (FC) in patients with brain metastases (BM). In this retrospective study, we investigate the influence of BM on hemodynamic brain signals derived from functional magnetic resonance imaging (fMRI) and FC. Motor-fMRI data of 29 patients with BM and 29 matched healthy controls were analyzed to assess percent signal changes (PSC) in the ROIs motor cortex, premotor cortex, and supplementary motor cortex and FC in the sensorimotor, default mode, and salience networks using Statistical Parametric Mapping (SPM12) and marsbar and CONN toolboxes.

View Article and Find Full Text PDF

Background: Growing research demonstrates the ability to predict histology or genetic information of various malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based radiomics in predicting the primary tumor of brain metastases through internal and external validation, using oversampling techniques to address the class imbalance.

Methods: This IRB-approved retrospective multicenter study included brain metastases from lung cancer, melanoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (5-class classification).

View Article and Find Full Text PDF

Background: Several research has underlined the multi-system character of COVID-19. Though effects on the Central Nervous System are mainly discussed as disease-specific affections due to the virus' neurotropism, no comprehensive disease model of COVID-19 exists on a neurofunctional base by now. We aimed to investigate neuroplastic grey- and white matter changes related to COVID-19 and to link these changes to neurocognitive testings leading towards a multi-dimensional disease model.

View Article and Find Full Text PDF

The interpretation of fMRI data in glioblastoma (GB) is challenging as these tumors exhibit specific hemodynamic processes which, together with malignancy, tumor volume and proximity to eloquent cortex areas, may lead to misinterpretations of fMRI signals. The aim of this study was to investigate if different radiologically defined GB tumor growth patterns may also influence the fMRI signal, activation pattern and functional connectivity differently. Sixty-four patients with left-hemispheric glioblastoma were included and stratified according to their radiologically defined tumor growth pattern into groups with a uniform (U-TGP) or diffuse tumor growth pattern (D-TGP).

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is a valuable tool in the clinical routine of neurosurgery when planning surgical interventions and assessing the risk of postoperative functional deficits. Here, we examined how the presence of a brain tumor or lesion in the area of the occipital lobe affects the results of fMRI retinotopic mapping. fMRI data were evaluated on a retrospectively selected sample of 12 patients with occipital brain tumors, 7 patients with brain lesions and 19 control subjects.

View Article and Find Full Text PDF

(1) Background-Mapping language using direct cortical stimulation (DCS) during an awake craniotomy is difficult without using more than one language paradigm that particularly follows the demand of DCS by not exceeding the assessment time of 4 s to prevent intraoperative complications. We designed an intraoperative language paradigm by combining classical picture naming and verb generation, which safely engaged highly relevant language functions. (2) Methods-An evaluation study investigated whether a single trial of the language task could be performed in less than 4 s in 30 healthy subjects and whether the suggested language paradigm sufficiently pictured the cortical language network using functional magnetic resonance imaging (fMRI) in 12 healthy subjects.

View Article and Find Full Text PDF

The biotransformation pathway of verapamil, a widely prescribed calcium channel blocker, was investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Mimicry of the oxidative phase I metabolism was achieved in a simple amperometric thin-layer cell equipped with a boron-doped diamond (BDD) working electrode. Structures of the electrochemically generated metabolites were elucidated on the basis of accurate mass data and additional MS/MS experiments.

View Article and Find Full Text PDF