Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM) and IgA memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K.
View Article and Find Full Text PDFThe multidrug-resistant 30 subclone of extraintestinal pathogenic sequence type 131 (ST131-30) has spread worldwide. This clone expresses a conserved lipopolysaccharide (LPS) O antigen, O25b. Previously, we described monoclonal antibodies (MAbs) specific to the O25b antigen and characterized them as diagnostic and therapeutic tools.
View Article and Find Full Text PDFKlebsiella pneumoniae is responsible for nosocomial infections causing significant morbidity and mortality. Treatment of newly emerging multi-drug resistant strains is hampered due to severely limited antibiotic choices. Passive immunization targeting LPS O-antigens has been proposed as an alternative therapeutic option, given the limited variability of Klebsiella O-antigens.
View Article and Find Full Text PDFis a Gram-negative, ubiquitous bacterium capable of causing severe nosocomial infections in individuals with impaired immune system. Emerging multi-drug resistant strains of this species and particularly carbapenem-resistant strains pose an urgent threat to public health. The lipopolysaccharide (LPS) O-antigen is the main surface antigen.
View Article and Find Full Text PDFKlebsiella pneumoniae ST258 is a globally distributed multi-drug resistant pathogen responsible for severe invasive infections. In this study, the different virulence potential of K. pneumoniae ST258 isolates in endotoxin susceptible versus resistant animal models was shown.
View Article and Find Full Text PDFKlebsiella pneumoniae ST258 is a globally disseminated, extremely drug resistant, nosocomial clone with limited treatment options. We show that the vast majority of ST258 isolates express modified d-galactan-I lipopolysaccharide O-antigen, termed hereinafter as D-galactan-III. The genetic determinant required for galactan-III synthesis was identified as a distinct operon adjacent to the rfb (wb) locus encoding D-galactan-I synthesis.
View Article and Find Full Text PDFThe Escherichia coli sequence type 131 (ST131)-O25b:H4 clone has spread worldwide and become responsible for a significant proportion of multidrug-resistant extraintestinal infections. We generated humanized monoclonal antibodies (MAbs) that target the lipopolysaccharide O25b antigen conserved within this lineage. These MAbs bound to the surface of live bacterial cells irrespective of the capsular type expressed.
View Article and Find Full Text PDFOverexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in acute myeloid leukemia (AML). Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1) was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec).
View Article and Find Full Text PDFMacrophages and dendritic cells have been recognized as key players in the defense against mycobacterial infection. However, more recently, other cells in the lungs such as alveolar epithelial cells (AEC) have been found to play important roles in the defense and pathogenesis of infection. In the present study we first compared AEC with pulmonary macrophages (PuM) isolated from mice in their ability to internalize and control Bacillus Calmette-Guérin (BCG) growth and their capacity as APCs.
View Article and Find Full Text PDF