Publications by authors named "Katharina Dietrich"

Spreading depolarization (SD) causes a massive neuronal/glial depolarization, disturbs ionic homeostasis and deranges neuronal network function. The metabolic burden imposed by SD may also generate marked amounts of reactive oxygen species (ROS). Yet, proper optical tools are required to study this aspect with spatiotemporal detail.

View Article and Find Full Text PDF

Background: Hyperhidrosis (excessive sweating, OMIM %114110) is a complex disorder with multifactorial causes. Emotional strains and social stress increase symptoms and lead to a vicious circle. Previously, we showed significantly higher depression scores, and normal cortisol awakening responses in patients with primary focal hyperhidrosis (PFH).

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurodevelopmental disorder that typically arises from spontaneous germline mutations in the X-chromosomal methyl-CpG binding protein 2 () gene. For the first 6-18 months of life, the development of the mostly female patients appears normal. Subsequently, cognitive impairment, motor disturbances, hand stereotypies, epilepsy, and irregular breathing manifest, with previously learned skills being lost.

View Article and Find Full Text PDF

This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ. Aβ is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 () gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irregular breathing manifest.

View Article and Find Full Text PDF

Aims: Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging.

View Article and Find Full Text PDF

One of the central research questions on the etiology of Alzheimer's disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits.

View Article and Find Full Text PDF

N-truncated Aβ4-42 is highly abundant in Alzheimer disease (AD) brain and was the first Aβ peptide discovered in AD plaques. However, a possible role in AD aetiology has largely been neglected. In the present report, we demonstrate that Aβ4-42 rapidly forms aggregates possessing a high aggregation propensity in terms of monomer consumption and oligomer formation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deregulation of neuronal cell cycle and differentiation control eventually resulting in cell death. During brain development, neuronal differentiation is regulated by Smad proteins, which are elements of the canonical transforming growth factor β (TGF-β) signaling pathway, linking receptor activation to gene expression. In the normal adult brain, Smad proteins are constitutively phosphorylated and predominantly localized in neuronal nuclei.

View Article and Find Full Text PDF