Publications by authors named "Katharina Bilotti"

Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates.

View Article and Find Full Text PDF

DNA ligases catalyze the joining of breaks in nucleic acid backbones and are essential enzymes for in vivo genome replication and repair across all domains of life. These enzymes are also critically important to in vitro manipulation of DNA in applications such as cloning, sequencing, and molecular diagnostics. DNA ligases generally catalyze the formation of a phosphodiester bond between an adjacent 5'-phosphate and 3'-hydroxyl in DNA, but they exhibit different substrate structure preferences, sequence-dependent biases in reaction kinetics, and variable tolerance for mismatched base pairs.

View Article and Find Full Text PDF

Large DNA constructs (>10 kb) are invaluable tools for genetic engineering and the development of therapeutics. However, the manufacture of these constructs is laborious, often involving multiple hierarchical rounds of preparation. To address this problem, we sought to test whether Golden Gate assembly (GGA), an DNA assembly methodology, can be utilized to construct a large DNA target from many tractable pieces in a single reaction.

View Article and Find Full Text PDF

DNA ligases, critical enzymes for in vivo genome maintenance and modern molecular biology, catalyze the joining of adjacent 3'-OH and 5'-phosphorylated ends in DNA. To determine whether DNA annealing equilibria or properties intrinsic to the DNA ligase enzyme impact end-joining ligation outcomes, we used a highly multiplexed, sequencing-based assay to profile mismatch discrimination and sequence bias for several ligases capable of efficient end-joining. Our data reveal a spectrum of fidelity and bias, influenced by both the strength of overhang annealing as well as sequence preferences and mismatch tolerances that vary both in degree and kind between ligases.

View Article and Find Full Text PDF

It has been predicted that 30 to 80% of archaeal genomes remain annotated as hypothetical proteins with no assigned gene function. Further, many archaeal organisms are difficult to grow or are unculturable. To overcome these technical and experimental hurdles, we developed a high-throughput functional genomics screen that utilizes capillary electrophoresis (CE) to identify nucleic acid modifying enzymes based on activity rather than sequence homology.

View Article and Find Full Text PDF

DNA assembly is an integral part of modern synthetic biology, as intricate genetic engineering projects require robust molecular cloning workflows. Golden Gate assembly is a frequently employed DNA assembly methodology that utilizes a Type IIS restriction enzyme and a DNA ligase to generate recombinant DNA constructs from smaller DNA fragments. However, the utility of this methodology has been limited by a lack of resources to guide experimental design.

View Article and Find Full Text PDF

Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies.

View Article and Find Full Text PDF

DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts.

View Article and Find Full Text PDF

Persistent DNA damage is responsible for mutagenesis, aging, and disease. Repair of the prototypic oxidatively damaged guanine lesion 8-oxo-7,8-dihydroguanine (8-oxoG) is initiated by oxoguanine glycosylase (hOGG1 in humans). In this work, we examine hOGG1 activity on DNA packaged as it is in chromatin, in a nucleosome core particle (NCP).

View Article and Find Full Text PDF

DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1) DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase) were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3'- and 5'- single base overhangs, and 5'-two base overhangs).

View Article and Find Full Text PDF

If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme.

View Article and Find Full Text PDF

Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond6127lvef2gjtot4eu9bonlkh2oth76l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once