Introduction: The evolution of adaptive immunity in resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (C) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype.
View Article and Find Full Text PDFAntibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats.
View Article and Find Full Text PDFAs the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies and other new formats, represent a key component in advancing antibody therapy. When designing new formats, a targeted modulation of pairing preferences is key. Several existing approaches are successful, but expanding the repertoire of design possibilities would be desirable.
View Article and Find Full Text PDFAs the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies, is critical to the advancement of the field. In contrast to monovalent antibodies, which consist of two identical antigen-binding sites, bispecific antibodies can target two different epitopes by containing two different antigen-binding sites. Thus, the rise of new formats as successful therapeutics has reignited the interest in advancing and facilitating the efficient production of bispecific antibodies.
View Article and Find Full Text PDFAntibodies have emerged as one of the fastest growing classes of biotherapeutic proteins. To improve the rational design of antibodies, we investigate the conformational diversity of 16 different germline combinations, which are composed of 4 different kappa light chains paired with 4 different heavy chains. In this study, we systematically show that different heavy and light chain pairings strongly influence the paratope, interdomain interaction patterns and the relative V-V interface orientations.
View Article and Find Full Text PDFCharacterizing and understanding the antibody binding interface have become a pre-requisite for rational antibody design and engineering. The antigen-binding site is formed by six hypervariable loops, known as the complementarity determining regions (CDRs) and by the relative interdomain orientation (V-V). Antibody CDR loops with a certain sequence have been thought to be limited to a single static canonical conformation determining their binding properties.
View Article and Find Full Text PDFFab consist of a heavy and light chain and can be subdivided into a variable (V and V ) and a constant region (C 1 and C ). The variable region contains the complementarity-determining region (CDR), which is formed by six hypervariable loops, shaping the antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and the relative interdomain orientations of the V -V and the C 1-C domains influence the shape of the paratope.
View Article and Find Full Text PDFIn the last decades, antibodies have emerged as one of the most important and successful classes of biopharmaceuticals. The highest variability and diversity of an antibody is concentrated on six hypervariable loops, also known as complementarity determining regions (CDRs) shaping the antigen-binding site, the paratope. Whereas it was assumed that certain sequences can only adopt a limited set of backbone conformations, in this study we present a kinetic classification of several paratope states in solution.
View Article and Find Full Text PDF