Malaria is caused by unicellular parasites of the genus Plasmodium, which reside in erythrocytes during the clinically relevant stage of infection. To separate parasite from host cell material, haemolytic agents such as saponin are widely used. Previous electron microscopy studies on saponin-treated parasites reported both, parasites enclosed by the erythrocyte membrane and liberated from the host cell.
View Article and Find Full Text PDFDuring transmission of malaria-causing parasites from mosquito to mammal, sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration.
View Article and Find Full Text PDFProfilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein.
View Article and Find Full Text PDFMigration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear.
View Article and Find Full Text PDFBackground: The virulence of Plasmodium falciparum malaria is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome-shaped protrusions called knobs on the IE surface is central to both.
View Article and Find Full Text PDF