We report on a new polymorph of silver antimonate AgSbO discovered with the use of high-pressure high-temperature synthesis at 16 GPa and 1380 °C. The crystal structure is determined from X-ray powder diffraction, and we find this new high-pressure phase crystallizes in monoclinic space group 2/ with the following values: = 8.4570(3) Å, = 9.
View Article and Find Full Text PDFTitanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state.
View Article and Find Full Text PDFThe resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates BaIrO and SrIrO to LaCuO points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different.
View Article and Find Full Text PDFContrary to previous studies that classify Na(2)IrO(3) as a realization of the Heisenberg-Kitaev model with a dominant spin-orbit coupling, we show that this system represents a highly unusual case in which the electronic structure is dominated by the formation of quasimolecular orbitals (QMOs), with substantial quenching of the orbital moments. The QMOs consist of six atomic orbitals on an Ir hexagon, but each Ir atom belongs to three different QMOs. The concept of such QMOs in solids invokes very different physics compared to the models considered previously.
View Article and Find Full Text PDFWe investigate the effect of Na intercalation in the layered Mott insulator TiOCl within the framework of density functional theory. We show that the system remains always insulating for all studied Na concentrations, and the evolution of the spectral weight upon Na doping is consistent with recent photoemission experiments. We predict the Na-doped superlattice structures, and show that substitutions of O by F, Cl by S, or Ti by V (or Sc), respectively, fail to metallize the system.
View Article and Find Full Text PDF