In recent years, the relation between Sound Event Detection (SED) and Source Separation (SSep) has received a growing interest, in particular, with the aim to enhance the performance of SED by leveraging the synergies between both tasks. In this paper, we present a detailed description of JSS (Joint Source Separation and Sound Event Detection), our joint-training scheme for SSep and SED, and we measure its performance in the DCASE Challenge for SED in domestic environments. Our experiments demonstrate that JSS can improve SED performance, in terms of Polyphonic Sound Detection Score (PSDS), even without additional training data.
View Article and Find Full Text PDF