Introduction And Hypothesis: The main risk factor for pelvic floor disorders is vaginal delivery, which may cause levator ani muscle (LAM) injury and denervation. LAM includes pubovisceral muscle (PVM, pubococcygeus), puborectalis muscle (PRM), and iliococcygeus muscle. We hypothesize that primiparous women with low pelvic floor muscle contraction have a reduced PVM cross-sectional area (CSA) compared to nulliparous women.
View Article and Find Full Text PDFFetal growth restriction (FGR) remains one of the main obstetrical problems worldwide, with consequences beyond perinatal life. Animal models with developmental and structural similarities to the human are essential to understand FGR long-term consequences and design novel therapeutic strategies aimed at preventing or ameliorating them. Herein, we described the long-term consequences of FGR in pulmonary function, structure, and gene expression, and characterized neurodevelopmental sequelae up to preadolescence in a rabbit model.
View Article and Find Full Text PDFFetal growth restriction (FGR) remains without an effective prenatal treatment. Evidence from murine FGR models suggests a beneficial effect of prenatal pravastatin. Since the rabbit hemodichorial placenta more closely resembles the human condition, we investigated the effects of prenatal maternal pravastatin administration in the rabbit FGR model.
View Article and Find Full Text PDFWe previously reported the multi-system sequelae of fetal growth restriction, induced by placental underperfusion, in near-term born rabbits, in the immediate neonatal period and up to pre-adolescence. Herein, we describe the pulmonary and neurodevelopmental consequences of FGR in rabbits born preterm. We hypothesize that FGR has an additional detrimental effect on prematurity in both pulmonary function and neurodevelopment.
View Article and Find Full Text PDFDendritic cells (DC) become fully functional upon maturation by various stimuli. We tested whether an immunostimulatory effect of clinically used immunomodulators (Luivac, Biostim, Ribomunyl, Imudon, Bronchovaxom) is caused by direct DC activation. We found that Luivac, Biostim and Ribomunyl have a very high DC stimulatory potential in vitro.
View Article and Find Full Text PDF