Publications by authors named "Katerina Strejcova"

Water pollution, particularly from heavy metals, poses a significant threat to global health, necessitating efficient and environmentally friendly removal methods. This study introduces novel zeolite-based adsorbents, specifically alkali-activated foamed zeolite (AAFZ), for the effective adsorption of Cu(II) and Ni(II) ions from aqueous solutions. The adsorbents' capabilities were comprehensively characterized through kinetic and isotherm analyses.

View Article and Find Full Text PDF

Elevated concentrations of heavy metals in natural waters can cause significant ecological problems. It is therefore essential to ensure their removal from any water discharged into the environment immediately, especially in case of an accident, where there is a risk of releasing large quantities or high concentrations. The aim of this paper is to test a newly developed adsorbent for the removal of heavy metals from aqueous solutions-in particular, it is very fast adsorption, and thus efficiency, during clean-ups.

View Article and Find Full Text PDF

Sulfur-free molybdenum carbides have the potential to replace the conventional sulfided catalysts used for hydrotreating. For these catalysts, it is not necessary to add sulfur to maintain their activity. This fact makes it worthwhile to continue working on improving their hydrotreating efficiency.

View Article and Find Full Text PDF

This study focused on natural materials such as clinoptilolite (CLI), metakaolin (MK), marlstone (MRL) and phonolite (PH). Clinoptilolite is one of the most known and common natural minerals (zeolites) with a unique porous structure, metakaolin is calcined kaolin clay, marlstone is a sedimentary rock and phonolite is an igneous rock composed of alkali feldspar and other minerals. These natural materials are mainly used in the building industry (additions for concrete mixtures, production of paving, gravels) or for water purification, but the modification of their chemical, textural and mechanical properties makes these materials potentially usable in other industries, especially in the chemical industry.

View Article and Find Full Text PDF