Publications by authors named "Katerina Stamataki"

Olive oil samples from three different Greek regions (Crete, Peloponnese and Lesvos) were examined by optical spectroscopy in a wide spectral region from ultraviolet to near infrared using absorption, fluorescence and Raman spectroscopies. With the aid of machine learning methods, such as multivariate partial least squares discriminant analysis, a clear classification of samples originating from the different Greek geographical regions was revealed. Moreover, samples produced in different subareas of Crete and Peloponnese were also well discriminated.

View Article and Find Full Text PDF

We demonstrate a method to increase the sensitivity of the s-p phase shift under total internal reflection (TIR) for optical sensing. This is achieved by the introduction of two simple dielectric layers to the TIR surface of a fused silica prism. The enhanced sensitivity is demonstrated using evanescent-wave cavity-ring-down-ellipsometry by measuring the refractive index of liquid mixtures and by studying the adsorption of polymers to the TIR surface of the fused silica prism.

View Article and Find Full Text PDF

We monitor the adsorption of Rhodamine 800, and the sedimentation of a polytetrafluoroethylene (PTFE) suspension at the surface of a fused-silica prism, by measuring both the absorption and s-p phase shift Δ of a 740 nm probe laser beam, using evanescent-wave cavity ringdown ellipsometry (EW-CRDE). The two systems demonstrate the complementary strengths of EW-CRDE, as the progress of adsorption of the Rhodamine 800 dye can only be observed sensitively via the measurement of absorption, whereas the progress of sedimentation of PTFE can only be observed sensitively via the measurement of Δ. We show that EW-CRDE provides a sensitive method for the measurement of Δ and demonstrates precision in Δ of about 10(-4) deg.

View Article and Find Full Text PDF

We introduce the new technique of evanescent-wave cavity ring-down ellipsometry (EW-CRDE), used for the measurement of ellipsometric angles of samples at a solid-gas or solid-liquid interface, and achieve phase-shift measurements with precision of ∼0.01°. We demonstrate the technique by measuring the time-dependent refractive index of methanol-water mixtures and thin films at the liquid/fused-silica interface, showing that the monitoring of monolayers on microsecond time scales using EW-CRDE should be achievable.

View Article and Find Full Text PDF