Publications by authors named "Katerina Pardali"

Background: There is no effective treatment for sepsis-associated acute kidney injury (SA-AKI). Ilofotase alfa (human recombinant alkaline phosphatase) has been shown to exert reno-protective properties, although it remains unclear which patients might be most likely to benefit. We aimed to identify a clinical phenotype associated with ilofotase alfa's therapeutic efficacy.

View Article and Find Full Text PDF

The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) regulates nuclear-factor-kappa-B (NF-κB) activation downstream of surface receptors with immunoreceptor tyrosine-based activation motifs (ITAMs), such as the B-cell or T-cell receptor and has thus emerged as a therapeutic target for autoimmune diseases. However, recent reports demonstrate the development of lethal autoimmune inflammation due to the excessive production of interferon gamma (IFN-ɣ) and defective differentiation of regulatory T-cells in genetically modified mice deficient in MALT1 paracaspase activity. To address this issue, we explored the effects of pharmacological MALT1 inhibition on the balance between T-effector and regulatory T-cells.

View Article and Find Full Text PDF

To examine the potential of TLR9 (Toll-like receptor 9) activation to modulate the type 2 immune response in asthma. To evaluate efficacy and safety of AZD1419, an inhaled TLR9 agonist, in a phase 2a, randomized, double-blind trial. Adult patients with asthma with a history of elevated eosinophils (>250 cells/μl) were randomized 1:1 to receive 13 once-weekly doses of inhaled AZD1419 (1, 4, or 8 mg;  = 40) or placebo ( = 41).

View Article and Find Full Text PDF

The past century has witnessed major advances in the control of many infectious diseases, yet outbreaks and epidemics caused by (re-) emerging RNA viruses continue to pose a global threat to human health. As illustrated by the global COVID19 pandemic, high healthcare costs, economic disruption and loss of productivity reinforce the unmet medical need to develop new antiviral strategies to combat not only the current pandemic but also future viral outbreaks. Pivotal for effective anti-viral defense is the innate immune system, a first line host response that senses and responds to virus infection.

View Article and Find Full Text PDF

Type 2 Innate lymphoid cells (ILC2s) are implicated in helminth infections and asthma where they play a role in the production of Th2-type cytokines. ILC2s express the IL-33 receptor and are a major cell type thought to mediate the effects of this cytokine in vivo. To study the signalling pathways that mediate IL-33 induced cytokine production, a culture system was set up to obtain pure populations of ILC2s from mice.

View Article and Find Full Text PDF

The mitogen-activated protein kinase p38α pathway has been an attractive target for the treatment of inflammatory conditions such as rheumatoid arthritis. While a number of p38α inhibitors have been taken to the clinic, they have been limited by their efficacy and toxicological profile. A lead identification program was initiated to selectively target prevention of activation (PoA) of mitogen-activated protein kinase-activated protein kinase 2 (MK2) rather than mitogen- and stress-activated protein kinase 1 (MSK1), both immediate downstream substrates of p38α, to improve the efficacy/safety profile over direct p38α inhibition.

View Article and Find Full Text PDF

Human type 2 innate lymphoid cells (ILC2) are the only ILC subset that shows heterogeneous expression of the SCF receptor c-Kit (CD117). Despite its use as surface marker to distinguish ILC populations, its influence on ILC2 biology has not been investigated. Here, we show that c-Kit expression of peripheral blood ILC distinguishes two functionally distinct ILC2 subsets (c-Kit and c-Kit ).

View Article and Find Full Text PDF

Background: Group 2 innate lymphoid cells (ILC2s) are effective producers of IL-5 and IL-13 during allergic inflammation and bridge the innate and adaptive immune responses. ILC2 numbers are increased in asthmatic patients compared with healthy control subjects. Thus far, human data describing their phenotype during acute allergic inflammation in the lung are incomplete.

View Article and Find Full Text PDF

IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation.

View Article and Find Full Text PDF

Background: p38 mitogen-activated protein kinase (MAPK) plays a central role in the regulation and activation of pro-inflammatory mediators. COPD patients have increased levels of activated p38 MAPK, which correlate with increased lung function impairment, alveolar wall inflammation, and COPD exacerbations.

Objectives: These studies aimed to assess the effect of p38 inhibition with AZD7624 in healthy volunteers and patients with COPD.

View Article and Find Full Text PDF

A substantial proportion of rheumatoid arthritis (RA)-patients experience an insufficient response to glucocorticoids, an important therapeutic agent in RA. The multidrug-resistance 1 (MDR1) gene product P-glycoprotein (P-gp) is an efflux pump that actively transports substrates, such as glucocorticoids, out of the cell. We investigated if the variation in response might be explained by single-nucleotide polymorphisms (SNPs) in the MDR1 gene.

View Article and Find Full Text PDF

Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays.

View Article and Find Full Text PDF

Fundamental open questions in signal transduction remain concerning the sequence and distribution of molecular signaling events among individual cells. In this work, we have characterized the intercellular variability of transforming growth factor β-induced Smad interactions, providing essential information about TGF-β signaling and its dependence on the density of cell populations and the cell cycle phase. By employing the recently developed in situ proximity ligation assay, we investigated the dynamics of interactions and modifications of Smad proteins and their partners under native and physiological conditions.

View Article and Find Full Text PDF

Background: The in situ proximity ligation assay (PLA) allows a protein or protein complex to be represented as an amplifiable DNA molecule. Recognition is mediated by proximity probes consisting of antibodies coupled with oligonucleotides. Upon dual binding of the proximity probes, the oligonucleotides direct the formation of a circular DNA molecule, which is then amplified by rolling-circle replication.

View Article and Find Full Text PDF

Detection and localization of fluorescent signals in relation to other subcellular structures is an important task in various biological studies. Many methods for analysis of fluorescence microscopy image data are limited to 2D. As cells are in fact 3D structures, there is a growing need for robust methods for analysis of 3D data.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) suppresses epithelial cell growth. We have identified a new target gene of the TGF-beta/Smad pathway, Meox2, encoding the homeodomain transcription factor that is known to regulate endothelial cell proliferation and muscle development. Knockdown of endogenous Meox2 by RNA interference prevented the TGF-beta1-induced cytostatic response.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) and Notch act as tumor suppressors by inhibiting epithelial cell proliferation. TGF-beta additionally promotes tumor invasiveness and metastasis, whereas Notch supports oncogenic growth. We demonstrate that TGF-beta and ectopic Notch1 receptor cooperatively arrest epithelial growth, whereas endogenous Notch signaling was found to be required for TGF-beta to elicit cytostasis.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) inhibits epithelial cell growth, in part via transcriptional induction of the cell cycle inhibitor p21(WAF1/Cip1) (p21). We show that bone morphogenetic protein (BMP)-7 induces higher p21 expression than TGF-beta1 in various epithelial cells. Despite this, BMP-7 only weakly suppresses epithelial cell proliferation, as Id2, a cell cycle-promoting factor, becomes concomitantly induced by BMP-7.

View Article and Find Full Text PDF

Smad proteins transduce transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-beta and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1).

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) is a secreted protein that regulates proliferation, differentiation and death of various cell types. All immune cell lineages, including B, T and dendritic cells as well as macrophages, secrete TGF-beta, which negatively regulates their proliferation, differentiation and activation by other cytokines. Thus, TGF-beta is a potent immunosuppressor and perturbation of TGF-beta signaling is linked to autoimmunity, inflammation and cancer.

View Article and Find Full Text PDF