This study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins.
View Article and Find Full Text PDFSynthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale.
View Article and Find Full Text PDFAlthough techniques such as fluorescence-based super-resolution imaging or confocal microscopy simultaneously gather both morphological and chemical data, these techniques often rely on the use of localized and chemically specific markers. To eliminate this flaw, we have developed a method of examining cellular cross sections using the imaging power of scattering-type scanning near-field optical microscopy and Fourier-transform infrared spectroscopy at a spatial resolution far beyond the diffraction limit. Herewith, nanoscale surface and volumetric chemical imaging is performed using the intrinsic contrast generated by the characteristic absorption of mid-infrared radiation by the covalent bonds.
View Article and Find Full Text PDF