Publications by authors named "Katerina Herynkova"

This work compares structural and optical properties of silicon nanocrystals prepared by two fundamentally different methods, namely, electrochemical etching of Si wafers and low-pressure plasma synthesis, completed with a mechano-photo-chemical treatment. This treatment leads to surface passivation of the nanoparticles by methyl groups. Plasma synthesis unlike electrochemical etching allows selecting of the particle sizes.

View Article and Find Full Text PDF

We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm).

View Article and Find Full Text PDF

Unlabelled: Silicon nanocrystals (Si-ncs) are promising for biological studies due to their supposed low cytotoxicity, good biocompatibility and biodegradability in living organisms. However, the bioresearchers' focus on Si-ncs has lasted only for a few recent years, and detailed studies of the interaction of various types of Si-ncs with biological environment are still rare. Suitable size and solubility of the Si-ncs in water-based isotonic solutions are important towards bringing the nanocrystals inside the living cells.

View Article and Find Full Text PDF

Silicon nanocrystals (SiNCs) smaller than 5 nm are a material with strong visible photoluminescence (PL). However, the physical origin of the PL, which, in the case of oxide-passivated SiNCs, is typically composed of a slow-decaying red-orange band (S-band) and of a fast-decaying blue-green band (F-band), is still not fully understood. Here we present a physical interpretation of the F-band origin based on the results of an experimental study, in which we combine temperature (4-296 K), temporally (picosecond resolution) and spectrally resolved luminescence spectroscopy of free-standing oxide-passivated SiNCs.

View Article and Find Full Text PDF