In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant.
View Article and Find Full Text PDFThe immense regenerative power of hematopoietic tissue stems from the activation of the immature stem cells and the progenitor cells. After partial damage, hematopoiesis is reconstituted through a period of intense regeneration when blood cell production originates from erythro-myeloid progenitors in the virtual absence of stem cells. Since the damaged hematopoiesis can also be reconstituted from transplanted hematopoietic cells, we asked whether this also leads to the transient state when activated progenitors initially execute blood cell production.
View Article and Find Full Text PDFRegeneration of severely damaged adult tissues is currently only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well established steady-state structure and function, easy accessibility, well established research methods, and the well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the need to expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) are crucial for lifelong blood cell production. We analyzed the cell cycle and cell production rate in HSPCs in murine hematopoiesis. The labeling of DNA-synthesizing cells by two thymidine analogues, optimized for in-vivo use, enabled determination of the cell cycle flow rate into G2-phase, the duration of S-phase and the average cell cycle time in Sca-1 and Sca-1 HSPCs.
View Article and Find Full Text PDFTransgenic mice expressing green fluorescent protein (GFP) are useful in transplantation experiments. When we used ubiquitin-GFP (UBC-GFP) transgenic mice to study the availability of niches for transplanted hematopoietic stem and progenitor cells, the results were strikingly different from the corresponding experiments that used congenic mice polymorphic in the CD45 antigen. Analysis of these unexpected results revealed that the hematopoiesis of UBC-GFP mice was outcompeted by the hematopoiesis of wild-type (WT) mice.
View Article and Find Full Text PDFThe c-Kit expression level is decreased in regenerating bone marrow, and such bone marrow performs poorly when co-transplanted with normal bone marrow. We asked whether diminished numbers of c-Kit receptors on hematopoietic stem and progenitor cells (HSPCs) after their internalization induced by the binding of the cytokine stem cell factor (SCF) would jeopardize transplantability of HSPCs. We used a battery of functional assays to evaluate the capacity of HSPCs with markedly different c-Kit expression levels to be transplanted.
View Article and Find Full Text PDFBackground: The tendency for male-larger sexual size dimorphism (SSD) to scale with body size - a pattern termed Rensch's rule - has been empirically supported in many animal lineages. Nevertheless, its theoretical elucidation is a subject of debate. Here, we exploited the extreme morphological variability of domestic dog (Canis familiaris) to gain insights into evolutionary causes of this rule.
View Article and Find Full Text PDFBiol Blood Marrow Transplant
September 2011
Hematopoietic stem and progenitor cells (HSPC) for bone marrow transplantation are currently obtained directly from living voluntary donors or from cord blood units. However, a suitable donor is not always found. Because HSPC are known for their relative resistance to hypoxia, using an experimental murine model, we explored cadaveric bone marrow (BM) as their alternative source.
View Article and Find Full Text PDF