Publications by authors named "Katerina E Tsitsanou"

Insect Odorant Binding Proteins (OBPs) constitute important components of their olfactory apparatus, as they are essential for odor recognition. OBPs undergo conformational changes upon pH change, altering their interactions with odorants. Moreover, they can form heterodimers with novel binding characteristics.

View Article and Find Full Text PDF

Personal protection measures against the mosquitoes like the use of repellents constitute valuable tools in the effort to prevent the transmission of vector-borne diseases. Therefore, the discovery of novel repellent molecules which will be effective at lower concentrations and provide a longer duration of protection remains an urgent need. Mosquito Odorant-Binding Proteins (OBPs) involved in the initial steps of the olfactory signal transduction cascade have been recognized not only as passive carriers of odors and pheromones but also as the first molecular filter to discriminate semiochemicals, hence serving as molecular targets for the design of novel pest control agents.

View Article and Find Full Text PDF

Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding. However, no structure of a plant-derived repellent bound to an OBP has been available until now.

View Article and Find Full Text PDF

Mosquitoes and other hematophagous arthropods, the primary vectors of multiple parasites and viruses, are responsible for the transmission of serious diseases to humans. Nowadays, the interest is focused on the development of novel repellents to the existing ones with advanced properties. The present study attempts the discovery of novel hit compounds which may evolve as insect repellents using a combined computational methodology targeting the Odorant Binding Protein 1 (OBP1).

View Article and Find Full Text PDF
Article Synopsis
  • The crystal structures of glycogen phosphorylase (GP) in both T-state and R-state, along with its complexes with activators IMP and AMP, have been analyzed at higher resolution.
  • These structures provide critical insights for drug design targeting GP, which is important for developing treatments for conditions like high blood sugar.
  • Notably, the study reveals a significant conformational change in the N-terminal segment and the allosteric binding site between the T-state and R-state, highlighting the structural differences that regulate GP activation.
View Article and Find Full Text PDF

In this work we report a fast and efficient virtual screening protocol for discovery of novel bioinspired synthetic mosquito repellents with lower volatility and, in all likelihood, increased protection time as compared with their plant-derived parental compounds. Our screening protocol comprises two filtering steps. The first filter is based on the shape and chemical similarity to known plant-derived repellents, whereas the second filter is based on the predicted similarity of the ligand's binding mode to the Anopheles gambiae odorant binding protein (AgamOBP1) relative to that of DEET and Icaridin to the same OBP.

View Article and Find Full Text PDF

Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.

View Article and Find Full Text PDF

Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery.

View Article and Find Full Text PDF

Flavonoids have been discovered as novel inhibitors of glycogen phosphorylase (GP), a target to control hyperglycemia in type 2 diabetes. To elucidate the mechanism of inhibition, we have determined the crystal structure of the GPb-chrysin complex at 1.9 Å resolution.

View Article and Find Full Text PDF

Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments.

View Article and Find Full Text PDF