Publications by authors named "Katerina Dvorakova-Hortova"

In vitro spermatogenesis (IVS) has already been successfully achieved in rodents by organotypic and soft matrix culture systems. However, the former does not allow single cell input, and the latter presents as a simple thick layer in which all cells are embedded. We explored a new culture system using a mouse model by employing an alginate-based hydrogel and 3D bioprinting, to control scaffold design and cell deposition.

View Article and Find Full Text PDF

Integrins are transmembrane cell receptors involved in two crucial mechanisms for successful fertilization, namely, mammalian intracellular signaling and cell adhesion. Integrins α6β4, α3β1 and α6β1 are three major laminin receptors expressed on the surface of mammalian cells including gametes, and the presence of individual integrin subunits α3, α6, β1 and β4 has been previously detected in mammalian sperm. However, to date, proof of the existence of individual heterodimer pairs in sperm and their detailed localization is missing.

View Article and Find Full Text PDF

17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation-called capacitation-and sperm⁻egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis.

View Article and Find Full Text PDF

Tetraspanins are multifunctional molecules located in specific microdomains on the plasma membrane. Thanks to their ability to form networks with other proteins they can participate in many cellular functions. Tetraspanins are part of the interactive network in gametes; however, their precise role in fertilization is not yet clear.

View Article and Find Full Text PDF

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis.

View Article and Find Full Text PDF

Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm⁻egg membrane fusion. The importance of these two proteins during the early stages of fertilization is supported by the complete sterility of CD9/CD81 double null female mice. In this study, the putative mechanism of CD9/CD81 involvement in tetraspanin web formation in sperm and its activity prior to fertilization was addressed.

View Article and Find Full Text PDF

The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors' variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies.

View Article and Find Full Text PDF

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ mouse melanoma cells into syngeneic C57BL/6N mice that express red fluorescent protein in their mitochondria.

View Article and Find Full Text PDF
Article Synopsis
  • Sperm-egg interaction is crucial for fertilization, and the tetraspanin protein CD81 plays a vital role in this process for mammals.
  • In bovine oocytes, CD81 is present at different maturation stages and accumulates in the perivitelline space during fertilization, showing its importance in sperm-egg fusion.
  • Comparisons between bovine and mouse sperm reveal similarities in CD81 localization, but also highlight species-specific differences, particularly during the acrosome reaction that may affect fertilization mechanisms.
View Article and Find Full Text PDF

The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further.

View Article and Find Full Text PDF

Fluorides and fluoroaluminates decrease mouse sperm fertilizing potential by modifying the process of sperm preparation for fertilization, so-called capacitation, followed by acrosome reaction (AR). Capacitation was monitored by protein tyrosine phosphorylation (pTyr), and AR was induced consequently. The aim of this study was to apply kinetic analysis to the previously obtained dependences of pTyr and AR at capacitation times, and propose a mathematical theory for a mechanism when sperm maturation ability is amended by external stimuli.

View Article and Find Full Text PDF

Background: Histone to protamine exchange and the hyperacetylation of the remaining histones are hallmarks of spermiogenesis. Acetylation of histone H4 at lysine 12 (H4K12ac) was observed prior to full decondensation of sperm chromatin after fertilization suggesting an important role for the regulation of gene expression in early embryogenesis. Similarly, DNA methylation may contribute to gene silencing of several developmentally important genes.

View Article and Find Full Text PDF

Toxoplasma gondii is a common protozoan parasite that infects warm-blooded animals throughout the world, including mice and humans. During infection, both, the parasite and the host, utilize various mechanisms to maximize their own reproductive success. Mice and humans are both the intermediate hosts for Toxoplasma gondii, which forms specialized vacuoles containing reproductive cysts in the formers' tissue.

View Article and Find Full Text PDF

The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fusion machinery has recently emerged.

View Article and Find Full Text PDF

It has been recently shown in mice that sperm undergo acrosome reaction (AR) by passing through cumulus cells; furthermore, the acrosome-reacted sperm can bind to zona pellucida and consequently fertilise the egg. During AR, the relocation of the primary fusion protein IZUMO1 into the equatorial segment is crucial for sperm-egg fusion. There is a high rate of spontaneous AR in rodents, with up to 60% in promiscuous species.

View Article and Find Full Text PDF

Estrogens play a crucial role in spermatogenesis and estrogen receptor α knock-out male mice are infertile. It has been demonstrated that estrogens significantly increase the speed of capacitation in vitro; however this may lead to the reduction of reproductive potential due to the decreased ability of these sperm to undergo the acrosome reaction. To date the in vivo effect of estrogens on the ability of sperm to capacitate has not been investigated.

View Article and Find Full Text PDF

Sperm chromatin reveals two characteristic features in that protamines are the predominant nuclear proteins and remaining histones are highly acetylated. Histone H4 acetylated at lysine 12 (H4K12ac) is localized in the post-acrosomal region, while protamine-1 is present within the whole nucleus. Chromatin immunoprecipitation in combination with promoter array analysis allowed genome-wide identification of H4K12ac binding sites.

View Article and Find Full Text PDF

In order for mammalian sperm to obtain a fertilizing ability, they must undergo a complex of molecular changes, called capacitation. During capacitation, steroidal compounds can exert a fast nongenomic response in sperm through their interaction with plasma membrane receptors, and activate crucial signaling pathways leading to time-dependent protein tyrosine phosphorylation (TyrP). Estrogen receptor beta was detected in epididymal mouse sperm; therefore, the effect of 17B-estradiol, estrone, estriol, and 17A-ethynylestradiol on mouse sperm capacitation in vitro was investigated.

View Article and Find Full Text PDF

This study describes the morphology of the spermatozoon from the cauda epididymidis of representative members of two squirrel subfamilies, the Sciurinae and Callosciurinae, as determined by fluorescent, scanning, and transmission electron microscopy. All species examined possess a massive apical segment of the sperm acrosome. It varied markedly in the extent of its caudal flexion but was always much larger, and more complex, than that of the spermatozoon of most other rodents so far documented, although somewhat similar to that of some hystricomorph species.

View Article and Find Full Text PDF

Background: Mammalian sperm must undergo a series of controlled molecular processes in the female reproductive tract called capacitation before they are capable of penetrating and fertilizing the egg. Capacitation, as a complex biological process, is influenced by many molecular factors, among which steroidal hormone estrogens play their role. Estrogens, present in a high concentration in the female reproductive tract are generally considered as primarily female hormones.

View Article and Find Full Text PDF

The mammalian female reproductive tract has an abundance of complement components, which play a vital role in protection against genital pathogens. Sperm may be protected against complement-mediated damage by complement regulatory proteins, including membrane cofactor protein (CD46), decay accelerating factor (CD55) and CD59. However, sperm from Apodemus (field mice) do not express CD46 protein.

View Article and Find Full Text PDF
Article Synopsis
  • A. agrarius mice do not express the CD46 protein on their spermatozoa and produce two unique mRNA transcripts lacking key elements compared to other Apodemus species.
  • Their CD46 transcripts feature alterations in their UTRs that lead to the absence of the protein.
  • Furthermore, A. agrarius exhibit a significantly faster acrosome reaction rate than both A. sylvaticus and Mus, suggesting a link between CD46 absence and reproductive speed.
View Article and Find Full Text PDF

There is pronounced promiscuity and sperm competition in long-tailed field mice (Apodemus sylvaticus). These mice have evolved unusual sperm behaviour favouring rapid fertilisation, including dynamic formation of sperm trains and their subsequent dissociation. The cell surface complement regulatory (CReg) protein CD46 is broadly expressed in eutherian mammals other than rodents, in which it is expressed solely on the spermatozoal acrosomal membrane.

View Article and Find Full Text PDF