Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities.
View Article and Find Full Text PDFBackground: Task-specific checklists and global rating scales are both recommended assessment tools to provide constructive feedback on surgical performance. This study evaluated the most effective feedback tool by comparing the effects of the Observational Clinical Human Reliability Analysis (OCHRA) and the Objective Structured Assessment of Technical Skills (OSATS) on surgical performance in relation to the visual-spatial ability of the learners.
Methods: In a randomized controlled trial, medical students were allocated to either the OCHRA (n = 25) or OSATS (n = 25) feedback group.
Background: The effect of three-dimensional (3D) vs. two-dimensional (2D) video on performance of a spatially complex procedure and perceived cognitive load were examined among residents in relation to their visual-spatial abilities (VSA).
Methods: In a randomized controlled trial, 108 surgical residents performed a 5-Flap Z-plasty on a simulation model after watching the instructional video either in a 3D or 2D mode.
In anatomical education three-dimensional (3D) visualization technology allows for active and stereoscopic exploration of anatomy and can easily be adopted into medical curricula along with traditional 3D teaching methods. However, most often knowledge is still assessed with two-dimensional (2D) paper-and-pencil tests. To address the growing misalignment between learning and assessment, this viewpoint commentary highlights the development of a virtual 3D assessment scenario and perspectives from students and teachers on the use of this assessment tool: a 10-minute session of anatomical knowledge assessment with real-time interaction between assessor and examinee, both wearing a HoloLens and sharing the same stereoscopic 3D augmented reality model.
View Article and Find Full Text PDFObjectives: The features that contribute to the apparent effectiveness of three-dimensional visualisation technology [3DVT] in teaching anatomy are largely unknown. The aim of this study was to conduct a systematic review and meta-analysis of the role of stereopsis in learning anatomy with 3DVT.
Methods: The review was conducted and reported according to PRISMA Standards.
Anat Sci Educ
September 2020
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning.
View Article and Find Full Text PDFVisual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities.
View Article and Find Full Text PDF