Publications by authors named "Katerina Barton Tomankova"

Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells.

View Article and Find Full Text PDF

Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory.

View Article and Find Full Text PDF

Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated.

View Article and Find Full Text PDF

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been widely studied for their beneficial antimicrobial effect and have been considered by some to be a safe ingredient, as penetration of metal nanoparticles through the skin in vivo has not been proven. However, AgNPs are becoming a commonly applied nanomaterial for surface modifications of medical products which come into contact with damaged skin. In our experiments, we tested two commercially available AgNPs samples manufactured by electrolysis.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are the most frequently applied nanomaterials. In our experiments, we tested AgNPs (size 27 nm) manufactured by the Tollens process. Physico-chemical methods (TEM, DLS, AFM and spectrophotometry) were used for characterization and imaging of AgNPs.

View Article and Find Full Text PDF

Hyaluronan (HA) films exhibit properties suitable for various biomedical applications, but the solubility of HA limits their use in aqueous environments. Therefore, we developed water insoluble films based on palmitoyl esters of HA (pHA). Films were prepared from pHA samples with various degrees of substitution (DS) and molecular weights and their mechanical properties and swelling were characterized.

View Article and Find Full Text PDF