We demonstrate a label-free peptide-coated carbon nanotube-based immunosensor for the direct assay of human serum. A rheumatoid arthritis (RA)-specific (cyclic citrulline-containing) peptide, was immobilized to functionalized single-walled carbon nanotubes deposited on a quartz crystal microbalance (QCM) sensing crystal. Serum from RA patients was used to probe these nanotube-based sensors, and antibody binding was detected by QCM sensing.
View Article and Find Full Text PDFNovel nanomaterials for bioassay applications represent a rapidly progressing field of nanotechnology and nanobiotechnology. Here, we present an exploration of single-walled carbon nanotubes as a platform for investigating surface-protein and protein-protein binding and developing highly specific electronic biomolecule detectors. Nonspecific binding on nanotubes, a phenomenon found with a wide range of proteins, is overcome by immobilization of polyethylene oxide chains.
View Article and Find Full Text PDFWe have developed an acrylic microfluidic device that sequentially couples liquid-phase isoelectric focusing (IEF) and free solution capillary electrophoresis (CE). Rapid separation (<1 min) and preconcentration (73x) of species were achieved in the initial IEF dimension. Using full-field fluorescence imaging, we observed nondispersive mobilization velocities on the order of 20 microm/s during characterization of the IEF step.
View Article and Find Full Text PDF