Over the past two decades, electrospinning has emerged as a common technique to produce biomedical scaffolds composed of ultrafine fibers formed from many natural and synthetic polymers. A major advantage of this technique is the ability to produce scaffolds that resemble the native extracellular matrix in physical, chemical, and topological properties. However, scaffolds fabricated via electrospinning are not formed with a controlled architecture and typically do a poor job of directing cell growth into prescribed structures for tissue/organ development.
View Article and Find Full Text PDF. Regeneration of damaged nerves is required for recovery following nervous system injury. While neural cell behavior may be modified by neuromodulation techniques, the impact of static direct current (DC) magnetic stimulation remains unclear.
View Article and Find Full Text PDFThe field of tissue engineering has benefited greatly from the broad development of natural and synthetic polymers. Extensive work in neural engineering has demonstrated the value of conductive materials to improve spontaneous neuron activity as well as lowering the necessary field parameters for exogenous electrical stimulation. Further, cell fate is directly coupled to the mechanical properties of the cell culture substrate.
View Article and Find Full Text PDF