Publications by authors named "Katelyn McCabe"

Serous Ovarian Cancers (SOC) are frequently resistant to programmed cell death. However, here we describe that these programmed death-resistant cells are nonetheless sensitive to agents that modulate autophagy. Cytotoxicity is not dependent upon apoptosis, necroptosis, or autophagy resolution.

View Article and Find Full Text PDF

High-risk neuroblastoma is associated with an overall survival rate of 30-50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration.

View Article and Find Full Text PDF

Activated leukocyte cell adhesion molecule (ALCAM) is an immunoglobulin superfamily cell adhesion molecule that is aberrantly expressed in a wide variety of human tumors, including melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer and pancreatic adenocarcinoma. This wide spectrum of human malignancies makes ALCAM a prospective pan-cancer immunoPET target to aid in detection and diagnosis in multiple malignancies. In this study, we assess site-specific versus non-site-specific conjugation strategies for (64)Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) immunoPET imaging of a fully human ALCAM cys-diabody (cDb) with a reduced linker length that retains its bivalent binding ability.

View Article and Find Full Text PDF

Background: Antibody-based therapeutics is a rapidly growing field. Small engineered antibody fragments demonstrate similar antigen affinity compared with the parental antibody but have a shorter serum half-life and possess the ability to be conjugated to nanoparticles. The goal of this study was to engineer an anti-carbohydrate antigen 19-9 (CA19-9) cys-diabody fragment in hopes of targeting nanoparticles to pancreatic cancer.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%-30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer.

View Article and Find Full Text PDF

Background: Sensitive antibody-based tumor targeting has the potential not only to image metastatic and micrometastatic disease, but also to be the basis of targeted therapy. The vast majority of pancreas cancers express carcinoembryonic antigen (CEA). Thus, we sought to evaluate the potential of CEA as a pancreatic cancer target utilizing a rapidly clearing engineered anti-CEA scFv-Fc antibody fragment with a mutation in the Fc region [anti-CEA scFv-Fc H310A].

View Article and Find Full Text PDF

Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to generate and evaluate a positron emission tomography (PET) radiotracer targeting activated leukocyte cell adhesion molecule (ALCAM).

Procedures: A human anti-ALCAM single chain variable fragment was reformatted to produce a covalent dimer, termed a cys-diabody (CysDb). Purified CysDb was characterized by gel electrophoresis and size exclusion chromatography, and immunoreactivity was assessed by flow cytometry and immunofluorescence.

View Article and Find Full Text PDF

Background: Intact antibodies are poor imaging agents due to a long serum half-life (10-20 d) preventing adequate contrast between the tumor and surrounding blood. Smaller engineered antibody fragments overcome this problem by exhibiting shorter serum half-lives (4-20 h).The diabody (55 kDa) is the smallest antibody fragment, which retains the bivalency of the intact antibody.

View Article and Find Full Text PDF

The identification of tumor tissue biomarkers has led to the production, validation, and Food and Drug Administration-approval of a number of antibody-based targeted therapeutics in the past two decades. As a result of the significant role that these immunotherapeutics play in the management of cancer, and the potential utility of complementary imaging agents, immunoPET imaging has generated considerable interest. This update discusses the important factors to consider when designing a PET (positron emission tomography) imaging agent from the molecular target to the biological targeting molecule and radionuclide combination and also reviews recent preclinical and clinical findings in the immunoPET field.

View Article and Find Full Text PDF

Purpose: Prostate stem cell antigen (PSCA), a cell surface glycoprotein expressed in normal human prostate and bladder, is over-expressed in the majority of localized prostate cancer and most bone metastases. We have previously shown that the hu1G8 minibody, a humanized anti-PSCA antibody fragment (single-chain Fv-C(H)3 dimer, 80 kDa), can localize specifically and image PSCA-expressing xenografts at 21 h post-injection. However, the humanization and antibody fragment reformatting decreased its apparent affinity.

View Article and Find Full Text PDF

Many biological and biomedical laboratory assays require the use of antibodies and antibody fragments that strongly bind to their cell surface targets. Conventional binding assays, such as the enzyme-linked immunosorbent assay (ELISA) and flow cytometry, have many challenges, including capital equipment requirements, labor intensiveness, and large reagent and sample consumption. Although these techniques are successful in mainstream biology, there is an unmet need for a tool to quickly ascertain the relative binding capabilities of antibodies/antibody fragments to cell surface targets on the benchtop at low cost.

View Article and Find Full Text PDF

The present work demonstrates the use of small bivalent engineered antibody fragments, cys-diabodies, for biological modification of nanoscale particles such as quantum dots (Qdots) for detection of target antigens. Novel bioconjugated quantum dots known as immunoQdots (iQdots) were developed by thiol-specific oriented coupling of tumor specific cys-diabodies, at a position away from the antigen binding site to amino PEG CdSe/ZnS Qdots. Initially, amino PEG Qdot 655 were coupled with reduced anti-HER2 cys-diabody by amine-sulfhydryl-reactive linker [N-ε-maleimidocaproyloxy] succinimide ester (EMCS) to produce anti-HER2 iQdot 655.

View Article and Find Full Text PDF