Background: Plasmodium falciparum malaria remains a major health challenge in Nigeria despite the global decline of its incidence and mortality rates. Although significant progress has been made in preventing the transmission of P. falciparum and controlling the spread of the infection, there is much to be done in the area of proper monitoring, surveillance of the parasite, investigating the population dynamics and drug resistance profiling of the parasite as these are important to its eventual eradication.
View Article and Find Full Text PDFBackground: Following its recent certification as malaria-free, imported infections now pose the greatest threat for maintaining this status in Sri Lanka. Imported infections may also introduce species that are uncommon or not previously endemic to these areas. We highlight in this case report the increasing importance of less common malaria species such as Plasmodium ovale in elimination settings and discuss its relevance for the risk of malaria resurgence in the country.
View Article and Find Full Text PDFThe effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated.
View Article and Find Full Text PDFBackground: Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax.
View Article and Find Full Text PDFDespite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping.
View Article and Find Full Text PDF