Background: Very-low-birth-weight preterm infants have a higher rate of language impairments compared with children born full term. Early identification of preterm infants at risk for language delay is essential to guide early intervention at the time of optimal neuroplasticity. This study examined near-term structural brain magnetic resonance imaging (MRI) and white matter microstructure assessed on diffusion tensor imaging (DTI) in relation to early language development in children born very preterm.
View Article and Find Full Text PDFAim: To predict gait impairment in toddlers born preterm with very-low-birth-weight (VLBW), from near-term white-matter microstructure assessed with diffusion tensor imaging (DTI), using exhaustive feature selection, and cross-validation.
Methods: Near-term MRI and DTI of 48 bilateral and corpus callosum regions were assessed in 66 VLBW preterm infants; at 18-22 months adjusted-age, 52/66 participants completed follow-up gait assessment of velocity, step length, step width, single-limb support and the Toddle Temporal-spatial Deviation Index (TDI). Multiple linear models with exhaustive feature selection and leave-one-out cross-validation were employed in this prospective cohort study: linear and logistic regression identified three brain regions most correlated with gait outcome.
Aim: To develop an easily-administered metric to quantify gait impairment in children and to assess its use in children with cerebral palsy (CP).
Method: The Pediatric Temporal-spatial Deviation Index (TDI) was developed from gait data collected from 75 typically developing children (37 males, 38 females; mean age 9y 4mo; interquartile range [IQR] 8-10y) and 17 children diagnosed with spastic CP (nine males, eight females; mean age 9y 9mo; IQR 9-11y), in Gross Motor Function Classification System (GMFCS) levels I to III, aged 7 to 11 years. Children walked on a pressure-sensitive mat.
Temporal-spatial reach parameters are revealing of upper-limb function in children with motor impairments, but have not been quantified in a toddler population. This work quantitatively characterizes temporal-spatial reach in typically-developing (TD) and very-low-birth-weight (VLBW) preterm toddlers, who are at increased risk of motor impairment. 47 children born VLBW (<1500 g birth-weight; ≤32 weeks gestation) and 22 TD children completed a reaching assessment at 18-22 months of age, adjusted for prematurity.
View Article and Find Full Text PDFBackground: Advanced neuroimaging and computational methods offer opportunities for more accurate prognosis. We hypothesized that near-term regional white matter (WM) microstructure, assessed on diffusion tensor imaging (DTI), using exhaustive feature selection with cross-validation would predict neurodevelopment in preterm children.
Methods: Near-term MRI and DTI obtained at 36.
Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP.
View Article and Find Full Text PDFReaching is a well-practiced functional task crucial to daily living activities, and temporal-spatial measures of reaching reflect function for both adult and pediatric populations with upper-extremity motor impairments. Inertial sensors offer a mobile and inexpensive tool for clinical assessment of movement. This research outlines a method for measuring temporal-spatial reach parameters using inertial sensors, and validates these measures with traditional marker-based motion capture.
View Article and Find Full Text PDFThis research aims to develop a gait index for use in the pediatric clinic as well as research, that quantifies gait deviation in 18-22 month-old children: the Toddle Temporal-spatial Deviation Index (Toddle TDI). 81 preterm children (≤32 weeks) with very-low-birth-weights (≤1500g) and 42 full-term TD children aged 18-22 months, adjusted for prematurity, walked on a pressure-sensitive mat. Preterm children were administered the Bayley Scales of Infant Development-3rd Edition (BSID-III).
View Article and Find Full Text PDFChildren born preterm with very-low birth-weight (VLBW) have increased risk of motor impairment. Early identification of impairment guides treatment to improve long-term function. Temporal-spatial gait parameters are an easily-recorded assessment of gross motor function.
View Article and Find Full Text PDFBackground: Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age.
Methods: One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.
Objective: Neonatal biomarkers of inflammation were examined in relation to early neurodevelopment and gait in very-low-birth-weight (VLBW) preterm children. We hypothesized that preterm infants exposed to higher levels of neonatal inflammation would demonstrate lower scores on Bayley Scales of Infant Toddler Development, 3rd ed. (BSID-III) and slower gait velocity at 18 to 22 months adjusted age.
View Article and Find Full Text PDFObjective: To identify biomechanical and clinical parameters that influence knee flexion (KF) angle at initial contact (IC) and during single limb stance phase of gait in children with spastic cerebral palsy (CP) who walk with flexed-knee gait.
Design: Retrospective analysis of gait kinematics and clinical data collected from 2010-2013.
Setting: Motion & Gait Analysis Laboratory at Lucile Packard Children's Hospital, Stanford, CA.
Objective: To identify clinical and biomechanical parameters that influence swing-phase knee flexion and contribute to stiff-knee gait in individuals with spastic cerebral palsy (CP) and flexed-knee gait.
Design: Retrospective analysis of clinical data and gait kinematics collected from 2010 to 2013.
Setting: Motion and gait analysis laboratory at a children's hospital.
Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.
View Article and Find Full Text PDFSelective motor control (SMC) impairment involves movement patterns dominated by flexor or extensor synergies that interfere with functional movements in children with cerebral palsy (CP). Emerging evidence on neural correlates of impaired SMC has important implications for etiology and for the treatment for children with CP. Early evidence on the microstructure of brain white matter assessed with diffusion tensor imaging in adult patients after stroke suggests that the rubrospinal tract may compensate for injury to the corticospinal tract.
View Article and Find Full Text PDFAt near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age.
View Article and Find Full Text PDFBackground: Abnormal biomechanical loading has been identified as an associated risk factor of osteoarthritis in the wrist and hand. Empirical data to date are insufficient to describe the role of altered biomechanics in thumb carpometacarpal (CMC) arthritis.
Questions/purposes: This is a pilot study to evaluate motion analysis of the upper extremity while performing functional tasks.