Publications by authors named "Katelyn C Chalaire"

This study was conducted to determine the efficacy of truck-mounted ultra-low volume applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3.

View Article and Find Full Text PDF

Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.

View Article and Find Full Text PDF

In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A.

View Article and Find Full Text PDF

Background: Serine proteinase inhibitors (Serpins) are a large superfamily of structurally related, but functionally diverse proteins that control essential proteolytic pathways in most branches of life. Given their importance in the biology of many organisms, the concept that ticks might utilize serpins to evade host defenses and immunizing against or disrupting their functions as targets for tick control is an appealing option.

Results: A sequence homology search strategy has allowed us to identify at least 45 tick serpin genes in the Ixodes scapularis genome that are structurally segregated into 32 intronless and 13 intron-containing genes.

View Article and Find Full Text PDF