We present an approach to measure the Milky Way (MW) potential using the angular accelerations of stars in aggregate as measured by astrometric surveys like Gaia. Accelerations directly probe the gradient of the MW potential, as opposed to indirect methods using, e.g.
View Article and Find Full Text PDFDark matter (DM) could be a relic of freeze-in through a light mediator, where the DM is produced by extremely feeble, IR-dominated processes in the thermal standard model plasma. In the simplest viable models with DM lighter than 1 MeV, the DM has a small effective electric charge and is born with a nonthermal phase-space distribution. This DM candidate would cause observable departures from standard cosmological evolution.
View Article and Find Full Text PDFIf a component of the dark matter has dissipative interactions, it could collapse to form a thin dark disk in our Galaxy that is coplanar with the baryonic disk. It has been suggested that dark disks could explain a variety of observed phenomena, including periodic comet impacts. Using the first data release from the Gaia space observatory, we search for a dark disk via its effect on stellar kinematics in the Milky Way.
View Article and Find Full Text PDFWe show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100 keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.
View Article and Find Full Text PDF