Scope: During pregnancy, mother-to-fetus transfer of nutrients is mediated by the placenta; sub-optimal placental development and/or function results in fetal growth restriction (FGR), and the attendant risk of stillbirth, neurodevelopmental delay, and non-communicable diseases in adulthood. A maternal diet high in fruit and vegetables lowers the risk of FGR but the association cannot be explained fully by known macro- and micronutrients.
Methods And Results: This study investigates if dietary-derived extracellular vesicles (EVs) can regulate placental function.
Atopic dermatitis (AD) remains a highly heterogenous disorder with a multifactorial aetiology. Whilst keratinocytes are known to play a fundamental role in AD, their contribution to the overall immune landscape in moderate-to-severe AD is still poorly understood. In order to design new therapeutics, further investigation is needed into common disease pathways at the molecular level.
View Article and Find Full Text PDFObjective: The consumption of caffeinated drinks and soft drinks is widespread in society, including by pregnant women. Data regarding the association of caffeine intake and stillbirth are varied. We aimed to investigate the degree of consumption of caffeinated drinks or soft drinks in the last four weeks of pregnancy in women who experienced a late stillbirth compared to women with ongoing live pregnancies at similar gestation.
View Article and Find Full Text PDFPre-eclampsia and fetal growth restriction arise from disorders of placental development and have some shared mechanistic features. Initiation is often rooted in the maldevelopment of a maternal-placental blood supply capable of providing for the growth requirements of the fetus in later pregnancy, without exerting undue stress on maternal body systems. Here, we review normal development of a placental bed with a safe and adequate blood supply and a villous placenta-blood interface from which nutrients and oxygen can be extracted for the growing fetus.
View Article and Find Full Text PDFPurpose: There is an urgent need to develop diagnostic tests to improve the detection of pathogens causing life-threatening infection (sepsis). SeptiFast is a CE-marked multi-pathogen real-time PCR system capable of detecting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here a systematic review and meta-analysis of diagnostic accuracy studies of SeptiFast in the setting of suspected sepsis.
View Article and Find Full Text PDF