We synthesized uranium oxide nanoparticles using a plasma flow reactor (PFR) and studied the effects of three different experimental parameters on the resulting morphologies and speciation of the particles: (1) collection duration, (2) collection substrate temperature, and (3) radial collection position due to radial temperature gradients in the PFR. We also induced three distinct temperature histories along the axis of the plasma flow reactor by varying the gas flow rates downstream of the plasma torch. Transmission electron microscopy (TEM) analyses of collected particles showed two phases of uranium oxides (fcc-UO and α-UO).
View Article and Find Full Text PDFIn this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000-5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments.
View Article and Find Full Text PDFBackground: Golf is one of the most popular sports in the United States (US) and is played by participants of all ages and skill level. Given the popularity and sport-specific demands on the upper torso, golf poses a considerable risk for upper extremity (UE) injuries. Therefore, the aim of the current study was to (1) determine the incidence rate of UE golf injuries presenting to emergency departments (EDs) in the US, (2) determine the most commonly injured body parts and mechanisms of injury, and (3) compare current injury epidemiology with previous trends in the literature.
View Article and Find Full Text PDFWhile most active plasmonic efforts focus on responsive metamaterials to modulate optical response, we present a simple alternative based on applied orientation control that can likely be implemented for many passive plasmonic materials. Passive plasmonic motifs are simpler to prepare but cannot be altered postfabrication. We show that such systems can be easily manipulated through substrate orientation control to generate both active plasmonic and active chiral plasmonic responses.
View Article and Find Full Text PDF